Impact of ICT Research on the HMA Industry

Imad L. Al-Qadi, PhD, PE, Dist.M.ASCE Founder Professor of Engineering ICT, Director

IAPA - March 10, 2014

Test Protocols for High Asphalt Binder Replacement

Sponsor: Illinois Dept. of Transportation/

Federal Highway Administration

Sustainable Asphalt Mixtures

- High-performance and durable mixes to reduce frequency of maintenance and rehabilitation treatments and provide smooth riding surface
- Lower environmental footprint with replacement of virgin constituents (aggregate and binder) with recycled materials, industrial by-products, and non-petroleum products
 - Warm-mix asphalt technology
 - RAP, RAS, RCA, steel slag, etc.
 - Bio-binder alternatives

Testing Program for High ABR Mixes

Low Temperature Cracking

Fatigue Cracking/ Service Temperature Permanent Deformation

-40°C

-20°C

20°C

40°C

Low in-service temperatures

Intermediate in-service temperatures

High Temperatures

High ABR* Mixes

Rut Resistance

Modulus of High ABR Mixes

Fatigue Test - Push-Pull Test

- Characterize damage with repeated load applications
- Uniaxial tension and compression
- □ Temperature @ 21°C
- Strain Controlled: 200 & 300 micro-strains

Fatigue Results

- 50% reduction in modulus value is used as failure criteria
 Change of ABR in N80 mixes appear to be very significant
- □ Change of ABR in N80 mixes appear to be very significant

Conventional Fracture Tests

Semi-Circular Bending (SCB)

@ Loading Rate = 0.7mm/min

Disc Compact Tension (DCT)

@ Loading Rate = 1.0 mm/min

Test Temperature= -12°C

SCB/DCT Test Results

Temperature and Rate Dependency

 Fracture experiments were conducted at a sweep of temperatures and loading rates

Load-LLD Curve @ 6.25mm (N80-50)

Asphalt Concrete

Response to loading

Fracture Path

SCB Fracture Test at Low Temperature (-12C) Rate (6.25mm/min)

SCB Fracture Test at High Temperature (25C) Rate (6.25mm/min)

Temperature and Rate Dependency

 Fracture energy changes with temperature

Fracture energy change with loading rate is sensitive to ABR

SCB Thresholds at 25 C

25 mm/min

Implementation Potential

- A simple and affordable test protocol to screen mixes for cracksusceptibility
- Performance based mix-design specifications considering rutting and cracking simultaneously

Development of Roadway/ Roadside LCA Tool

Sponsor: Illinois Tollway

Research Motivation & Background

- The U.S. pavement industry, recognizing the need to strive toward sustainability, has implemented design practices to reduce emissions and energy consumption
- Life cycle assessment (LCA) is a strategy that can systematically and holistically assess the environmental performance of pavements

Production

Research Approach

- Complete roadway/roadside LCA
- Pavement sustainability rating system

Scope

- Regionalized inventory database for energy and emissions in material and fuel production
 - Questionnaires, literature, commercial LCI database

LCA Tool

- Preliminary Pavement LCA tool
 - Project information, materials, construction and maintenance inputs from the user

ILLINOIS CENTER FOR TRANSPORTATION									Pavements LCA
Mix Designs	Surface <u>To AC/PCC</u>	Mix To Agg. (Sub)b		<u>To</u>	Seal 1 Surface Seal			To Materials	To Navigat
		A	C/PCC MIX DES	IGN 1					
Mix Design ID	Surface	Asphalt Mix Volumetrics							
ype	Asphalt mix	Gmb, design (g/cm3)		2.541					
Plant Location		Gmm (g/cm3)		2.625					
Plant-to-Site Distance (mi)		Voids (%)		4					
rocess	HMA Plant	Gmb, in place (g/cm3)	2.520					
Material Wasted (%)	1.0	Asphalt Content (%) 5.6							
Material Crushed Aggregate	Description (optional)	Binder (%)	(%Mix) 50.7	(optional, for dist.)	Mode	Distance	e (mi)	(Ib/CY) 2053	
rushed Aggregate			31			1		1255	
Aineral Filler			6.3	1		1 †		255	
ecycled Asphalt Pavement		6	12			1 1		486	
traight Binder			5.6			1 1		227	
] [0	
]			0	
								0	
								0	
								0	
								0	
						·		0	
						·		0	

Sample Results: By Mix

Impact of ABR Using LCA

A clear trend in the reduction of energy and GHG emissions with increasing ABR

Implementation Potential

- A project- or network-level tool to assess environmental sustainability performance
- Implementation of LCA promotes a holistic understanding of sustainability that can be used in decision making
- Integrated sustainability architecture with a pavement management system with cost, performance, and environment to promote more sustainable infrastructure
- An objective measure of sustainability whose results can be disseminated to public

Effects of Various Asphalt Binder Additives/Modifiers on Moisture-Susceptible Asphaltic Mixtures

Sponsor: Illinois Department of Transportation/ Federal Highway Administration

Research Objective and Approach

- Determine short- and long-term effects of selected additives/modifiers on controlling moisture damage of typical Illinois mixes
 - Liquid antistrip, hydrated lime, SBS, poly-phosphoric acid (PPA), foamed binder

Typical Results

Findings

- LAS appears to be an efficient additive improving tensile strength ratio
- Lime addition improves overall strength
- PPA does not improve moisture resistance of mixes evaluated
- Aging time, type, and duration of conditioning cycles are significantly altering the overall strength of mixes

Implementation Potential

- Quantify the effectiveness of selected additives/modifiers in controlling moisture damage of asphaltic mixtures
- Recommendations and guidelines on use of the most appropriate additive(s)/ modifier(s) for typical mixes in Illinois
- Cost-effectiveness impact of using selected additives/ modifiers

Do We Need to Test Each Product?

- Predict moisture susceptibility of a particular asphalt mixture using sessile-drop methodology
- Contact angle
 between a probe
 liquid and substrate
 (aggregate or
 binder) defines the
 surface tension

Sessile Drop Device

Contact Angle

Contact Angle

Solid Substrate

Typical Results

Tests were conducted on PG 64-22 binder, PG 64-22 with SBS, PG 64-22 with PPA, PG 64-22 with LAS, limestone aggregate

Micromechanical Computational Model

Xray CT Data Acquisition & Image Processing

Micromechanical Computational Models

Moisture Transport

Mechanical Relaxation

Moisture Damage

 Adhesive and cohesive damage potential of asphalt concrete mixtures can be identified using microstructural simulations

Field Experience and Lab Testing of Fine-Graded Mixes

Sponsor: Illinois Department of Transportation/ Federal Highway Administration

Project Objective and Scope

- ✓ Use fine graded (F-G) HMA as an alternative to coarsegraded (C-G) HMA in Illinois for binder/ surface courses
- F-G mixtures: gradation curve passes over the max. density line at the critical control sieve -> Easier to compact (esp. in thin lifts), less permeable
- ✓ The project focused on binder-course mixtures (19mm NMAS, N90), produced with local aggregates (D5).
- ✓ The research study includes mix design, lab performance testing, APT testing, and field permeability testing.

Aggregate Structure

FG Study Findings

- FG mixes are as good or superior to CG. Limited ATLAS testing confirmed this result.
- Significant permeability reduction
- Easier to compact and can result in higher density PFP
- Project TRP has developed a new IL 19mm binder spec that raises and broadens gradation bands to accommodate FG mixes.

Thank You Questions?

ILLINOIS

AT URBANA-CHAMPAIGN