

Pavement Type Selection for Alternate Contracting

IAPA Annual Meeting March 9, 2015

ENERGY & ENVIRONMENT

INFRASTRUCTURE

Overview

Contracting Types

• D-B-B, D-B, CM/GC, DBOM, DBFOM, P3

Pavement Type Selection Basics

Economic and non-economic factors

Flexible vs. Rigid

Design Features

Why is this Illinois guy qualified to talk about things that are not common to Illinois?

Pavement Design Specialist

- \$4B+ P3 Projects
- \$700M DBOM
- \$4B+ D-B Projects

FHWA Innovation Deployment Contractor

- Design-Build
- CM/GC
- Alternate Technical Concepts (ATC)

Historical Background: FHWA Procurement Requirements

- Mid-1800's, many states adopt "low bid" requirements to protect taxpayers from extravagance, corruption and other improper practices by public officials
- 1938 Federal Highway Act required competitive bidding
- 1968 Federal Highway Act revised Title 23 USC to award construction contracts, "...only on the basis of the lowest responsive bid."
- February 2, 1990, FHWA establishes "Special Experimental Project No. 14 – Innovative Contacting"
- 1998 TEA-21 authorizes design-build

There are many project delivery methods

Design - Bid - Bid

Traditional Delivery

Design – Build

Construction Manager / General Contractor

SEP – 14 Cost Plus Time Bidding

SEP - 14 Lane Rental

Design – Build – Operate – Maintain

Design – Build – Finance – Operate – Maintain

Public Private Partnership (P3)

Alternate Delivery

Alternate delivery encourages innovation

Alternative Technical Concepts

- Confidential proposals for consideration
- Advances new technology, materials, construction
- Allows owners to receive full competitive value
 - (vs. 50% share through value engineering change proposal)

Use of best tools, materials, practices

NCHRP 10-75 Project Objective

Develop a Guide for Pavement-Type Selection.

Include processes for consideration in making decisions regarding pavement-type selection, using:

- Agency-based (decision is internal to the highway agency) processes.
- Contractor-based (selection is made by the contractor using criteria stipulated by the agency) processes.

Economic Pavement Type Selection Factors

Initial Cost
Rehabilitation Cost
Maintenance Cost
User Cost
Life Cycle Cost

Non-Economic Pavement Type Selection Factors

Roadway/lane geometrics

Continuity of adjacent pavements

Continuity of adjacent lanes

Traffic during construction

Availability of local materials

Conservation of materials

Local preference

Stimulation of competition

Noise

Safety

Subgrade soils

Experimental features

Future needs

Maintenance Capability

Sustainability

The Operations and Maintenance Type in Alternate Delivery Drives Bidder Strategy

No Operations – Maintenance Component

- Be low responsive bidder
- Eliminate work items with high cost or long time

With O&M LCCA & Risk Management Key

- LCCA over period of O&M (considering turn back)
- Pavement performance risk
- Price risk
- O&M strategies

Discount rate drives decisions

Pavement Design Considerations

Some Limit Pavement Alternatives

- Prescriptive designs
- Prescriptive typical sections
- Little room for innovation

Most allow approved methods/technologies

- Local design method
- AASHTO Pavement ME Design
- Other design methods

With O&M, more innovation allowed

Pavement Type

Rigid Pavement vs. Flexible Pavement

- Team preference
- CRCP rarely selected

Most factors of safety are out

- D-B Do what you can get approved through ATC
- Finance Risk assessment
 - What will the failure mechanism be?
 - What are the maintenance requriements?

Pavement drainage – Yes or No?

Longitudinal Joints Handled Different Based on Alternate Contracting Type

No O&M

Follow the specification

O&M

- Evaluate risk, cost, schedule
- Often increased attention to longitudinal joints
- Often consideration for echelon paving, cut back, etc.

Pavement ME Used to Evaluate Impact of Many Pavement Design Inputs

Pavement ME is an analysis tool

Designer/contractor evaluates "what-if"

Results allow the evaluation of risk

Mechanistic-Empirical Design

Predicting Distress

Design Parameters Over Pavement Life

Base Stiffness Impacts Needed Thickness

-SG Mr = 25 ksi

-SG Mr = 3,000

 \rightarrow SG Mr = 15 ksi

Effect of HMA Modulus (E*) on Alligator Cracking

→ Subg. Mod = 30 ksi — Subg. Mod = 15 ksi → Subg. Mod. = 3 ksi

Mix Properties Matter

Mix Properties Matter

Mix Properties Matter

Mix Properties & Construction Practices Can Reduce Thickness at the Same Performance

10" Full-Depth HMA Section

6% in-place Voids in all mixes

9" Full-Depth HMA Section

5% in-place voids in all mixes

Similar Performance

Parting Thoughts

Pavement type selection is more complex under alternate contracting

Economic and non-economic factors are still part of the evaluation

Tools not same as Illinois standards

Designers/contractors can innovate

- Leads to lower cost solutions
- Equivalent or better performance

William R. Vavrik, Ph.D., P.E.

Vice President & Principal Engineer 100 Trade Centre Dr., Suite 200 Champaign, IL 61820 (217) 356-4500 wvavrik@ara.com

Thank You!

