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CHAPTER 1

Introduction

A cooperative investigation to develop and refine End-Result Specifications (ERS) for
asphalt pavement construction was conducted under the Illinois Cooperative Highway Research
Program (ICHRP), Project R-23. Specifications for asphalt pavement construction in Illinois
have evolved from highly prescriptive material and method specifications, to quality control,
quality assurance (QC/QA) specifications, and more recently to ERS on a demonstration basis.
ERS demonstration projects have been led by the Illinois Department of Transportation’s (IDOT)
Bureau of Materials and Physical Research (BMPR) and undertaken by the IDOT districts on a
voluntary basis since the year 2000. These comprehensive projects were focused on larger hot-
mix asphalt (HMA) projects (8,000 tons and higher), and often involved interstate or state
highway resurfacing projects.

One of the benefits of ERS is the introduction of true incentive/disincentive clauses for the
control of material parameters that are believed to be linked to pavement quality. In Illinois the
pavement qualities which determine payment are in-situ density, asphalt content, and plant air
voids of plant-produced HMA. The use of an end-result approach gives the contractor more
freedom in the attainment of those end-results, i.e., equipment choices, plant and field
operations, etc., and therefore promotes contractor innovation and creates avenues for lower bid
costs, while assuring material quality. The introduction of payment incentive/disincentives
requires regular material sampling and testing. But more importantly, because ERS shifts some
of the responsibility from the agency to the contractor, it is important to understand the relative
risks assumed by each party in such a specification. As will be demonstrated in this report, the
existence of significant measurement device variability and measurement device bias increases
the overall risk in an ERS system.

Specification Risk

Most of the choices made in the development of an ERS have an effect on specification
risk. Risks are undertaken by both the contractor and agency. The introduction of new
specification criteria and/or the adjustment of certain specification attributes can shift the risk
from the contractor to the agency and vice-versa. In some cases, specification changes can
widen or narrow the range of risk.

Some of the key contributors to risk in ERS are:

Contractor testing versus agency testing
Frequency of testing and/or number of samples
Variability and/or bias of test device and/or test procedure
Specification parameters, including:

0 Specification limits

0 Pay factor equation

0 Pay “caps”



0 Acceptance test frequency and acceptance tolerance
0 Third-party testing provisions

Contractor risk must be controlled in order to arrive at fair payment, which would lead to lower
and more consistent bid estimates over time, and would minimize disputes. Agency risk must be
controlled in order to ensure that high quality pavement is produced, so that desired
serviceability and safety levels are maintained over the design life.

In the past, researchers have attempted to develop statistical or simulation tools to help
understand and balance risks in asphalt construction specifications. A computer simulation
program called OCPLOT, developed in FHWA Demonstration Project 89 by Weed (1996), is
available for generating OC curves. OCPLOT was found to be user-friendly and very useful for
initial assessment of relative risks, allowing the user to vary the following factors: sample size,
pay factor equation, specification limits, and retest provisions. The program allows the user to
assess the probability of acceptable material being rejected (defined as contractor risk) and the
probability of rejectable quality material being accepted (defined as agency risk) over the long
run. However, a number of the factors that appear to be related to risk, including measurement
device variability and testing bias, are not considered in OCPLOT. In addition, it can be argued
that the most tangible measurement of risk should be linked to the financial impact on the
project, i.e., how risk affects what is actually paid versus what should have been paid. Thus, one
of the tasks in the ICHRP R-23 project involved the development of a simulation program that
could be used to quantify and balance fiscally quantified risks, or payment risk, for the purpose
of developing a rational and equitable end-result specification for asphalt pavement construction
in Illinots.

One of the necessary steps in the assessment of payment risk is to clearly define the risk
metric. The one used in this project is very straight forward:

Payment Risk = Payment made to the contractor — “Correct” payment

Ideally, tests performed by different parties on the same material should give very similar
results. However, in practice even split samples will show different results when the tests are
carried out by two different agencies, or in two different labs. Because of these uncertainties
there is a risk of accepting rejectable quality material and vice-versa.

In the ERS approach, a percentage of acceptable quality (Percent Within Limits, or PWL)
is determined, rather than pass/fail criteria used in typical QC/QA approaches (Figure 1.1).
Payment is then made based on this percent within limits value (Patel, 1996). Because of the
uncertainties involved with the test results the payment made also may be more or less than what
it would be if the actual quality of the construction would have been exactly determined (Weed,
1996; Willenbrock, 1976; NCHRP, 1976; Barros et al., 1983; Puangchit et al., 1983; Afferton et
al., 1992; AASHTO, 1995). Overpayment of the contractor is often referred to as “agency risk”
while underpayment is often termed “contractor risk.” Throughout this document, positive
values of risk refer to the instance where the agency paid more than required (agency risk) and
negative values of risk indicate that the agency paid less than what the contractor deserved
(contractor risk).
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Figure 1.1: Concept of Percent Within Limits (PWL)

Outline of ICHRP R-23 Risk Analysis Research

To address the need for estimating and analyzing payment risks in an ERS, researchers at
the University of Illinois at Urbana-Champaign have developed a series of risk simulation
models that provide the user a virtual environment to quickly generate and analyze thousands of
realistic ERS data sets. The first simulation model developed was ILLISIM (Buttlar and
Hausman, 2000). This was followed by PaySim and BiasSim (Aurilio et al., 2002) which used
different models and catered to different aspects of risk analysis and simulation. The latest model
developed is called Simulated Risk Analysis, or SRA. SRA combines the capabilities of each of
the earlier programs into a single program, with added features to simplify the process of
conducting sensitivity analyses.

Chapter 2 describes the development of these simulation models, starting with ILLISIM.
ILLISIM takes input parameters such as measurement variability, production variability, mean
production, sample size, and sampling technique, and generates data which simulate test results
that are collected in the field or at the plant to assess construction quality for ERS. The generated
data is based on the assumption that data collected in a typical construction project would be
normally distributed (Hall and Williams, 2002). Analysis is then performed on simulated data to
estimate the contractor and agency payment risks, along with statistically determined confidence



intervals. ILLISIM was developed with a Microsoft Excel interface, with analysis code written in
Visual Basic for Applications (VBA). Chapter 2 also describes the improvements in ILLISIM
which resulted in a new program, called PaySim. PaySim used a different simulation engine
based upon the chi-square distribution rather than normal distribution, which permitted
simulations to be less time consuming, which was a concern with ILLISIM. Furthermore,
PaySim was coded in C++ and made into executable program, which also enhanced the
processing speed considerably. The program, however, continued to utilize an MS Excel user
interface.

The development of a third version of the simulation program, called BiasSim, was
necessitated with the recognition of the fact that bias in field measurements played a significant
role in the risk involved with pay factors (Buttlar et al., 2001). BiasSim was exclusively
dedicated to analysis of effects of bias on risk as described in Chapter 2. Finally, a unified
simulation program was developed, which combined the capabilities of ILLISIM/ Paysim and
BiasSim, called Simulated Risk Analysis (SRA), which is also presented in detail in Chapter 2.

SRA has been extensively used to analyze Illinois Department of Transportation end-
result specifications. The analysis and results are presented in Chapter 3. Chapter 4 summarizes
project activities and findings, presents study conclusions, and presents recommendations for
futher study. Additional details of the earlier models, namely ILLISIM, PaySim and BiasSim,
have been provided in the Appendicies.

10



CHAPTER 2

Development of Simulation Models

Analysis of data obtained from actual construction projects corresponding to various
quality characteristics like in-situ density, air-voids content, and asphalt content, have shown the
data to be largely normally distributed (Hall and Williams, 2002). Although the target for a
particular quality characteristic is generally a fixed value because of certain uncontrollable
factors, it is almost never possible to produce exactly at that level.

Variability observed in the field includes both production variability and measurement
variability. Production variability includes all variability introduced due to field compaction
variables, variability in the quality and physical characteristics of source materials, changes in
the relative proportions of ingredients in the plant-produced asphalt mixture, changes in plant
operational characteristics, changes in equipment operators, etc. Measurement variability is the
variability which is introduced by measuring devices, test procedures, and operator techniques
and human error. In addition to variability around the actual value, a measurement bias may be
introduced as well. Bias refers to a consistent shift in data and can be introduced by device
calibration errors, human error, or by the intentional biasing of measurements and/or recorded
data. Two common examples of device calibration bias relevant to the IDOT ERS program are:
the use of an incorrect ignition oven calibration factor, or an improper angle calibration in a
Superpave gyratory compactor.

Estimating and Expressing Variability

Setting bias aside for the moment, air voids, density, and asphalt content data collected in a
typical ERS project can be assumed to have normally distributed fluctuations. This can be
mathematically modeled as:

(d/AV/AC)= 1+ 0 o + Ornees
Where,
(d / AV / AC) represents density, or air voids, or asphalt content data
Y7 represents mean
O prod. represents the production variability and
O rreas. represents the measurement variability

It should be noted that contractor, agency, and third-party data are expected to follow this model.
Third party, as referred to here, is an independent testing entity employed by the agency for
resolving disputes in test measurement results. Since all the parties test the same material using
split samples, the mean and production variability is the same for all parties. The difference

11



observed in the test data from the contractor and the agency, for example, can be attributed to the
measurement variability. Therefore, the model when applied to the contractor data would be:

(d / AV / AC)Contractor = ,U + Gprod. + O-meas,Contractor

and when applied to the agency, would be:

(d/ AV /AC) pgeney =+ T oy +C

meas, Agency

Since each measurement is performed on the spilt samples of the same material, the two values
modeled above would form paired data. Subtracting the second from the first would eliminate
the mean and production variability terms.

(d/ AV / AC)coracer —(d/ AV / AC) ppeey = ~o

meas,Contractor meas, Agency

Both terms on the right side of the equation come from a normal population. Therefore, their
difference also would be normally distributed. Therefore,
Gmeas,Contractor - O-meas,Agency = N (,U s GComb)

Where,
N(u, O'Comb) represents a normally distributed population with # as mean and o, as

combined standard deviation where:

1=0

_ 2 2
GComb - \/ O-meas,Contractor + Jmeas,Agency

Further, it can be assumed that the measurement variability for one type of test, like core density
or asphalt content, would be fairly similar. Then, field data could be pooled in order to obtain a
typical value for measurement variability, which assumes:

Gmeas,Contractor = Gmeas,Agency = Gmeas
Therefore,
o — O-Comb
meas
N2
Simulation

The motivation for using simulation to quantify specification risk can be summarized as
follows:

12



e Risk in a construction specification arises from the fact that the process produces
material with significantly varying properties, but the measurement of such
fluctuations is relatively expensive and therefore a limited number of
measurements can be taken. The problem is further complicated since, unlike
some other manufacturing processes, measurement variability and bias also exists
due to the use of imperfect measuring devices.

e In order to quantify payment risk in a specific end-result specification, one must
first statistically describe how the aforementioned uncertainties in calculated pay
would, in the long run, fluctuate from the ideal pay.

e In order to statistically describe payment error, one must either use a closed-form
analytical solution or a simulation tool. Except for the simplest of specifications,
closed-form solutions are not possible to formulate. Simulation approaches
generally require the computation and analysis of thousands of simulated
production runs in order to arrive at model convergence. With modern
computing power, tens of thousands of construction scenarios can be simulated in
tens of minutes. Furthermore, the amount of simulation time required is not of
critical concern, since the simulations are used in the creation or adjustment of a
specification. Once the specification is developed, implementation of the
resulting ERS does not require the simulation to be run.

e In order to simulate variability in asphalt pavements material properties, one
must be able to sequentially simulate: 1) production and/or construction
variability; 2) effects of random sampling of the variable material; 3) effects of
measurement variability and/or bias, and finally; 4) the effects of tester bias on
the final reported test measurement values.

e In order to estimate risk in terms of effects on pay, the software must also
simulate the formulas and decision tree logic contained in the construction
specification.

e Finally, a useful simulation tool would provide a convenient user interface,
facilitating the rapid generation of input files, executing the analysis engine, and
providing a statistically-oriented analysis of data (post-processing). An advanced
tool would also be able to create a database of results, and a post-processor for
evaluating the database at a later time (to save computational time).

One of the main challenges in the development of a risk simulation program is the ability
to generate tens or hundreds of thousands of field measurements from thousands of simulated
construction projects. Based upon the assumption of normality discussed earlier, this relies on
generating a normally distributed random number sequence with mean and standard deviation
values or ranges to be studied as input by the user. In Chapter 3 we report the extensively
studied values estimated from observations of actual field project standard deviations in Illinois.

The following sections describe the development of a series of ERS simulation models,
developed in this project, of progressively increasing sophistication and increased user options

and flexibility, including:

- ILLISIM — The Original Simulation Model
- PaySim — A Second-Generation Simulation Model

13



- BiasSim — A Simulation Tool for Analyzing Bias
- Simulated Risk Analysis (SRA): The Latest Model

The most current program, Simulated Risk Analysis (SRA), is a culmination of its predecessors
and represents a highly functional, user-friendly ERS development and analysis tool.

The reader who is interested in the historical development of ERS and simulation tools in
Illinois should read on. Readers interested in learning about the most recent specification and
simulation tools used in Illinois should skip to the section entitled “Simulated Risk Analysis
(SRA): The Latest Model.”

ILLISIM: The Original Simulation Model

The first computer program developed to analyze payment risks was called ILLISIM.
Details are provided in Appendix Al and in Buttlar and Hausman (2000) and Buttlar et al.
(2001). ILLISIM was used to model the Illinois ERS demonstration projects in 2000.

ILLISIM randomly generates simulated values for the quality characteristics within given
SUBLOTS and LOTS of material on a paving job. It should be noted that capitalization is used
for the terms ‘LOTS’ and ‘SUBLOTS’ in this report to be consistent with the nomenclature used
in previous IDOT reports. The user has the ability to determine how ILLISIM evaluates the
source(s) of variability depending on how easily individual sources of error can be identified. If
a given characteristic has separable, measurable sources of variability, the user can determine
how each source independently affects the determination of quality. Standard deviation is
considered as an estimate of the variability of construction. Using density as an example,
ILLISIM can consider three individual elements of variability (longitudinal, transverse, and
measurement device). However, if the user wishes to analyze a database of historical
measurements from which individual sources of variability cannot be deduced, the total standard
deviation from the data set can be used.

ILLISIM uses the simulated measurements to compute a mean, standard deviation,
percent within limits, and pay factor for each LOT of material considered. A minimum of 1000
LOTS were typically simulated for each unique group of input parameters considered. ILLISIM
keeps track of a large number of runs, so that a statistical distribution of correct pay, versus
actual pay for individual LOTS and complete JOBS, can be plotted.

The sampling schemes that can be simulated and analyzed using ILLISIM for as-
constructed pavement density can be described as follows:

e Dual-Stratified Random Sampling Method — A length of pavement, or LOT, can be
divided into equal SUBLOTS, which can be further subdivided by the number of transverse
measurements desired per SUBLOT. Sampling locations are based upon a conventional
stratified random layout in the longitudinal direction. In the transverse direction, samples are
to be taken at the 2-, 4-, 6-, 8-, and 10-ft offsets, in random order. Means and standard
deviations are then computed using all measurements.

14



o Stratified-Average Sampling Method — This method utilizes an identical sampling layout
as the dual-stratified method. However, the mean and standard deviation are computed in a
different manner. First, an average density is obtained for each of the SUBLOTS within a
LOT. Then, a LOT average and standard deviations are computed using all the SUBLOT
averages.

The average of properties measured within the LOT is the same between the two
methods, but the stratified-average approach decreases the standard deviation and masks the
variability that may occur across the mat.

The motivation for investigating the stratified-average method was to stabilize PWL-
predictions on a per-LOT basis in an attempt to minimize the possibility of frequent disputes,
particularly when marginal quality levels arise.

Inputs for ILLISIM

The user supplies the following inputs to ILLISIM:

(1) Mean value of as-produced or as-constructed quality characteristic (e.g. density, asphalt
content, etc.) to be considered, or, more commonly, a range of such mean values

(2) Standard deviation(s) of the quality characteristic(s) associated with production and
construction

(3) Standard deviation of the measurement device

(4) Number of measurements

(5) Sampling arrangement (e.g., completely random, dual-stratified random, stratified-
averaging method, etc., described in more detail in a later section)

(6) Specification limits

(7) Pay factor equation

(8) Pay limits or "caps" (per lot and per job)

ILLISIM Computations and Output

First, simulated density measurements are used to obtain averages and standard
deviations. Next, PWL values and pay factors are determined. A separate program called
"Baseline" determines the "correct pay" for the input values given, based upon a very large
number of simulations. Pay factor differences per LOT and per JOB are computed using
ILLISIM, which are then compared to the correct pay value. Pay factor differences arise since a
discrete number of measurements will not typically lead to an exact measure of mean and
standard deviation for any given LOT.

Plots are generated to assess payment differences, or payment errors, that can be expected
for a given set of inputs. These results are generally shown across a range of mean desity,
asphalt content (AC), or air voids to illustrate the increased risk of payment error for LOT
averages that happen to be near the specification limits (e.g., when marginal quality levels arise).
Maximum and minimum payment errors (risks) per LOT (based upon 1000 LOTS) and per JOB
(100 JOBS) are given. Also plotted are the 95% confidence intervals for pay differences relative
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to mean pay, which allow the analyst to identify typical risk envelopes, independent of possible
extreme values for maximum or minimum pay difference. Finally, by defining the 95%
confidence intervals on payment error as a "risk index," risk levels are also compared between
different sampling methods, number of measurements, and such.

ILLISIM can be used to determine possible operating ranges where a given level of
payment can be obtained, under various levels of process and device standard deviation.
ILLISIM was used to assist IDOT in developing sampling schemes, adjusting specification limits
and sample sizes for their asphalt ERS specification. More details are provided in Appendix Al.

PaySim: A Second-Generation Simulation Model

While ILLISIM was useful in shaping early decisions in ERS specification development,
one major drawback of the model was the amount of time required to run the software. The
factors behind the long computations times were:

(a) ILLISIM uses a reverse Monte Carlo Simulation algorithm. It relies on
generating thousands of random numbers, processing them and repeating this
procedure many, many times.

(b) ILLISIM was encoded completely in Microsoft Excel and Visual Basic for
Applications, which are not optimized for large numerical problems.

To overcome these limitations, another simulation model called PaySim was developed.
PaySim used an entirely new mathematical model to generate simulated data. This model does
not require generation of thousands of normally distributed random numbers for each iteration,
as was the case with ILLISIM. Instead, PaySim generates random numbers following a Chi-
squared distribution. Ultimately, generated values are identical in nature to those generated by
ILLISIM, but they are arrived at more efficiently. Also, the coding of the main simulation
engine was done in the C programming language. These enhancements brought about
appreciable improvement in the speed of the simulation process. In addition, PaySim was made
to be more user-friendly and versatile. Details of the new mathematical model used in PaySim
can be found in Appendix A2.

Inputs for PaySim

(1) Device variability

(2) Production variability

(3) Number of samples

(4) Number of sublots

(5) Analysis range for the quality characteristic being analyzed
(6) Specification limits

(7) Pay cap option (cap before averaging or after averaging)
(8) Precision in simulation required (four levels available)

(9) Confidence interval desired
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Outputs from PaySim

The simulation is fully automated to complete all the tasks and produce risk plots for the
quality characteristic being analyzed and in the range as defined in the inputs. The list of inputs
also gives an idea of the versatility of the simulation, because practically any combination of
input parameters can be chosen and analyzed. The output is in the form of risk plots showing the
risk to the agency in terms of pay factor.

BiasSim: A Simulation Tool for Analyzing Bias

Besides variability, measurements of quality characteristics are prone to bias, or
consistent shift in the measurements. ILLISIM and PaySim primarily dealt with issues related to
production and measurement variability, number of specimens, sampling schemes, and tolerance
limits. However, Buttlar et al. (2001) demonstrated that bias can significant effect payment risk.
Furthermore, in order to accurately estimate production and measurement from field data,
especially when data are to be pooled between multiple projects, bias must be first subtracted
from the data to avoid arriving at highly inflated estimates of variability. BiasSim primarily
focuses on the effects that such bias can have on the measurements and therefore on the pay
factors and specification risk (Aurilio et al. 2002). Details about the BiasSim program can be
found in Appendix A3. A brief summary follows.

Determining Bias Magnitude

Table 2.1 provides an example of the calculation of bias from field data. In this example,
10 split samples (adjacent cores, longitudinally aligned on the pavement and closely spaced)
were taken to determine the as-constructed density of a pavement. The difference in the
contractor and agency test results can be used to estimate the magnitude of bias. It is assumed
that split samples have identical properties. Since a large number of samples have been obtained
during IDOT ERS demonstration projects, reliable estimates of measurement bias have been
obtained. More estimates of bias are given in Appendix A3 and have been reported in Buttlar et
al., 2002.
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Table 2.1: Example of bias calculation from in-place density data

Job Contractor | Agency | Difference | Mean of Diff
(Bias)
92.60 91.81 0.79
93.67 93.84 -0.17
93.92 93.92 0.00
92.77 93.39 -0.62
L 93.80 93.88 -0.08
District 8 93.96 | 9421 | -0.25 0.11
92.85 91.81 1.04
95.45 95.12 0.33
94.17 94.46 -0.29
95.04 94.67 0.37

Inputs for BiasSim

Microsoft Excel with visual basic programming is used as the interface for the user to enter
the following inputs:

(1) Quality Characteristic to be analyzed

(2) Production variability

(3) Device variability for contractor (multiple inputs possible)
(4) Device variability for agency (multiple inputs possible)
(5) Sample size per job

(6) Number of cases to be analyzed (for batch processing)
(7) Range of quality characteristic values for analysis

(8) Specification limits

(9) Comparison tolerances

(10) Precision desired in simulation

(11) Confidence interval
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Output from BiasSim

The outputs from the simulation are plots displaying risk in pay factor (%PF) for a given
set of parameters and in the range of analysis desired. In the case of batch processing of
simulation runs, all the cases are first computed, stored to a database, and then plotted. The plots
also provide the lower limit and upper limit of confidence interval respectively. The level of
significance for the confidence limits can be chosen by the user. In general, the existence of bias
in measurements creates a skew in the risk plots, as presented in the Appendix (and later, in
Chapter 3). Obviously, for the case of a contractor result biasing towards the middle of the
specification limits, a positive risk (agency risk) exists.

The BiasSim program can be used to set comparison limits for quality assurance, number
of QA samples, and specification decision tree logic for agency, contract, and third party test
comparisons. Because of test variability, bias is not estimated accurately in QA comparison
limits. This inaccuracy has been studied both in terms of number of invalid comparisons for a
given job size over long runs, and in terms of its effect on payment risk for both parties. Invalid
comparisons are the ones which are incorrectly assessed by the QA portion of the specification.

Simulated Risk Analysis (SRA): The Latest Model

ILLISIM, PaySim and BiasSim have been found to be useful tools for the analysis of
risks in ERS systems in Illinois. Ultimately, it was necessary to combine the capabilities of these
simulation tools into a single, combined risk analysis program because of the concurrent
presence of production variability, measurement variability and bias. This has now been
accomplished, in the SRA program.

How Does SRA Work?

In terms of the simulation engine, input, and output, SRA is truly a combined form of
ILLISIM and BiasSim with additional features added for enhanced analysis capabilities and
flexibility. Unlike the previous programs, SRA generates measurements to simulate the third-
party tests, when needed. Third-party tests are used when the contractor and agency
measurements do not match and the contractor chooses the option of having a third party resolve
the dispute. Therefore, the full decision tree used in the present IDOT ERS is implemented.

SRA generates three sets of simulated data, with N measurement values in each set.
Detailed flow charts describing the algorithms used in SRA are provided in Figures 2.1 through
2.3. The three sets correspond to the contractor, agency (District), and third-party measurements.
N is the sample size for the job. The contractor and district measurements are then compared
according to the DOT specifications. First, one out of every five measurements from the
contractor and the district, corresponding to one split sample, is randomly selected and
compared. If the two measurements are found to be within the tolerance limits specified for N=1
comparison, the contractor measurements are accepted for calculating payment. If the N=1
comparison fails, the contractor has the choice of accepting the district measurements or
invoking the N=3 comparison with the third party.
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The simulation engine has logic enforcing the rule that if the district measurements are
closer to the middle of the acceptance limits, the contractor would choose to defer to the District
measurements. This would normally increase the percent within limits, since the benefit of
moving towards the middle of the specification range would normally outweigh the negative
impact of an increased standard deviation. If the contractor chooses to invoke third-party testing,
then three split sample measurements, chosen according to the comparison specifications, are
averaged and compared. The tolerance limit for this N=3 comparison is generally stricter than
that used in the N=1 comparison. If the average of the three measurements is within this
tolerance limit the contractor measurements are accepted for pay calculation. Otherwise the
third-party measurements are accepted. Thus a separate list of accepted measurements is
generated. These measurements are then used to determine the percent within limits (PWL)
according to the specifications. PWL is used to calculate pay factor for the contractor. The pay
factor equation from the 2004 and 2005 IDOT ERS specification is taken by default, as shown
below.

PF=0.53+0.5* PWL

Where,
PF = Pay Factor (%)
PWL = Percent Within Limits

Depending on the accuracy desired, a certain number (generally between 1,000 and
10,000) of such sets of data are generated and PF calculated. The mean of all pay factors is then
calculated and confidence intervals (90 percent by default) on the pay are determined. This set of
pay factors is generally not normally distributed, because of the nonlinear nature of the
acceptance logic, and the effects of maximum pay and pay caps. Therefore, mean and standard
deviation of pay factor results should not be used to determine the confidence limits. Rather, a
numerical assessment of the cutoff points, which provide the prescribed number of values inside
the confidence intervals, is used. These calculations are performed at a particular mean value and
repeated across the range of mean values specified by the user at a user-specified interval. Please
refer to the brief user’s guide in the next section for guidelines for specifying the interval. The
output is in the form of plots for mean risk, ideal pay, and actual pay, along with confidence
interval limits as described earlier.

As previously mentioned, the contractor, agency, and/or third party can introduce bias.
While there is no perfect method available to estimate individual bias values, paired data from
split samples from any two of the three parties can be used to investigate the possibility of bias.
While the possibility of bias canceling (bias from both parties, in same direction) or bias
compounding (bias from both parties, in opposite directions) exists, and would complicate bias
analysis, it is expected that significant bias would most often occur in the data of a single party.
While all of the aforementioned cases can be modeled without difficulty, up to this point the
SRA program has only been used to study the effects of bias introduced by a single party.
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SRA presents analysis results for two main classes of problems:
(1) Analysis with original simulated data: In this case specification limits are applied on the
original simulated data. Then percent within limits (PWL) and pay factors (PF) are

calculated.

(2) Analysis with data from which relative bias has been removed: Although individual
absolute values of bias are not known, it is possible to remove any relative bias detected.
An important point is that tolerance specifications are applied on the difference in
measurement values of two parties rather than their individual values. Therefore, it is
possible that before applying the tolerance specifications, relative bias is subtracted from
the differences. Then, ideally the differences should represent measurement variability
only. This procedure, if applied, would tend to reduce payment risk, if the data were
appreciably biased, as compared to an analysis where bias was left in the data and used to
arrive at a higher variability estimate.

Table 2.2 presents an example to illustrate the calculation and removal of relative bias. It should
be noted that a very small number of measurements are shown in this example. In reality each
party would have 100 to 250 or more measurements in a typical ERS project in Illinois.

Table 2.2: Example calculation for relative bias calculation and removal

Job Contractor | Agency | Difference Me?gi;;)D'ﬁ '\E)?;frgféfff

9260 | 91.81 0.79 0.68

9367 | 93.84 | -017 20.28

93.92 | 93.92 0.00 011

9277 | 9339 | -062 0.73

o 93.80 | 93.88 | -0.08 20.19
District 8 93.96 | 94.21 20.25 0.11 20.36
92.85 | 91.81 1.04 0.93

9545 | 95.12 0.33 0.22

9417 | 9446 | -0.29 20.40

95.04 | 94.67 0.37 0.26

Mean 93.82 93.71 0.11 0.00

The columns “Contractor” and “Agency” represent density measurements in  %Gmm
corresponding to the named party. Each row shows the values for split sample measurements.
Differences between the paired values are then calculated, and the mean of the differences
provides an estimate of the relative bias. The last column shows the differences when relative

bias is removed from the differences.
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Brief Users’ Guide for SRA

The main simulation engine for SRA has been developed in the program Matlab.
However, Microsoft Excel with Visual Basic programming is used as the interface. The
simulation is run in two stages, as follows.

(1) Microsoft Excel is used as the interface (SRA.xls). Figure 2.4 illustrates a
portion of the user interface. The following points may be helpful in using the
SRA Excel interface.

Working Directory: The first task is to specify the working directory. A
backslash (“\”) should not be used at the end of the directory name. This is
the directory where the input and output files will be stored by the
program. This can be different from where SRA xls is actually stored.
Output File Name: The name of the output file is then specified, without
a file extension. The program automatically saves results to an Excel file
with a .csv file extension.

Case: Since the SRA program is set up for batch processing up to 30 runs,
the user must provide analysis parameters for a corresponding number of
rows, as explained below. For convenience, any analysis case can be
skipped by un-checking the case (check box is located one row above the
Case number).

Precision Required: Even with recent improvements to algorithms and
the computing environment, the SRA simulation places significant
demands on processing time. However, if one only desired to observe
general trends for quick reference it is possible to choose a lower precision
level in order to reduce analysis time. There are four standard levels of
precision available, “High”, “Medium”, “Low” and “Crude”. There are
default numbers of runs that are sent to the simulation engine depending
on the precision input by the user. But the user can also change the
number of runs corresponding to these levels of precision. Table 2.3 gives
the default number of runs associated with the precision levels. These
defaults can be changed by editing cells “F39” to “F42” in the Excel
Worksheet entitled “Home.”

Table 2.3: Number of runs associated with precision levels in SRA

Desired Precision No. of Runs
Crude 50
Low 1000
Medium 5000
High 10000

Confidence Level: Four standard confidence limits can be chosen from
the drop-down list. Custom confidence limits can be typed directly into
cell “F45.” The new entry will automatically appear in the drop-down list,
which can then be selected. Each case can have a different confidence
level associated with it.
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Measurement Variability (Contractor, Agency and Third Party):
Measurement variability is also sometimes referred to as device
variability, and is a user-defined variable. Estimates of measurement
variability can be computed from split sample test data, as described
earlier in this report. This parameter has a strong influence on risk.
Production Variability: This refers to the variability of selected physical
properties of the as-produced mixture or as-constructed pavement,
independent of measurement variability. As noted in the earlier analysis,
this does appreciably affect payment risks. Although it is generally not
possible to obtain direct measure of this parameter, it can be estimated by
mathematically extracting the measurement variability from the total
variability, using the equations provided earlier in this chapter.

Sample Size: This is the number of specimens to be tested in the project
by the contractor.

Bias (Contractor, Agency and Third Party): These are the estimates of
individual bias in the measurements of the contractor, agency and the third
party.

Limits (Upper and Lower): These are the upper and lower specification
limits for acceptance of the product for the quality characteristic being
analyzed.

Comparison Limits (Tolerance Limits): Tolerance limits define the
maximum acceptable difference in test measurements between the
comparing parties (e.g. Contractor and Agency). If the two readings are
considered different this can be resolved by either the contractor accepting
the agency readings or by using third-party measurements (in IDOT
specifications). Also, according to the current IDOT specifications one out
of five samples are compared first (N=1 comparison) and if the difference
is outside the allowable limit, the average based on three samples are
compared (N=3 comparison), this time using the tighter tolerance limits.
Number of Plotting Points: This is the minimum number of plotting
points desired in the risk plot to be generated by the simulation. The
simulation uses adaptive plotting to put in more points if there are abrupt
changes in the plot.

Increase in Point Density for Peaks: This is the maximum increase in
plotting density for adaptive plotting. More density would mean more
processing time. If three is input in this field there will be at maximum
three times as many points in the region of the peak as there are in regions
of the plot where the curve is flat. It has been observed that having a
density higher than 7 does not lead to a further gain in accuracy.

Lowest and Highest Points to be Plotted: This defines the range of the
quality characteristic chosen for analysis. All the risk would be calculated
in this range. Practically, values far from the specification limits do not
have risks, because everything would be rejectable quality. So, a good
range could be from lower specification limit minus 4 times the standard
deviation to the upper specification limit plus 4 standard deviations. This
range, however, should be widened by the amount of bias on both sides.
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There is no harm in taking a wider range except for the fact that the
density of plotting points would be less or the number of points would
need to be increased, leading to higher processing time.

e« Remove Bias and Analyze: SRA simulates the field measurements with
bias, if provided by the user. The user can opt for a second analysis to be
done after removal of relative bias in addition to the analysis with biased
data by keying in 1 (one) in this field. If the field has 0 (zero), SRA would
not produce risk analysis results for the case when relative bias is
removed.

o Default: If the user does not have a preference, the Default button can be
used to restore typical default values.

o Auto Fill: This button can be used to copy the parameter values from the
previous case. This is quite handy when the user changes only a few
values from one case to the next.

e All Clear: This button can be used to clear all the parameter values before
entering new values.

e Simulate: After all the values have been entered and precision levels,
confidence intervals and cases have been chosen, the user can use this
button to generate an input file named “input.txt”. This input file is placed
in the working directory, which can be edited by the user with a text
editor. However, the layout of the file should not be altered. Multiple
spaces are considered as single space by the simulation program. The
sequential position of the entries in rows and columns are important, but
not the spacing (free form input file). After this button is pressed, the
program will ask if input.txt should be overwritten, etc.

(2) The main simulation engine was coded in Matlab. The user should set the
working directory for SRA as the current directory in Matlab. It is assumed
that the input file has been prepared in a previous step, as described above.
Now the user simply clicks on the “Simulate” button. While the program will
stop only after all the cases have been run, the command window will
constantly show the case number being simulated and the percentage progress
for that run. The percentage of progress is only for that case run and not for
the entire batch run.
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Working Directory dAERS [Anshul\ERS Review Jan 04\Deliverable
Output File Name Cut

Simulate Auto Fill Cases | Clear All Cases ‘

Default Auto Fill Auto Fill Auto Fill Auto Fill Auto Fill

Check Cases to be Simulated v v v v v v
Case Serial Number Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Precision Required Wl edium J fl edium ﬂ i edium ﬂ t edium ﬂ ht edium J M edium J
Confidence Level 0.9 Zl 0.9 Zl 0.9 Zl 0.9 Zl 0.9 Zl 0.9 Z“
Parameter to be Simulated “oids “oids Yoids Woids Woids Woids
Device Variability (Contractor) 0.15 0.15 0.45 0.45 0.15 0.15
Device Variability (Agency) 0.15 0.15 0.45 0.45 0.15 0.15
Device Wariability (Third Party) 0.15 0.15 0.45 0.45 0.15 015
Production Variahility 0.1 0.6 0.1 0.6 0.1 0.6
|Sample Size (Each Job) (N [ 5 | 5 | 5 [ 5 [ 5 [ 5 |
Bias {Contr.) 0.1 -0.1 -0.1 -0.1 0.42 0.42
Bias {Agency) 0.1 0.1 0.1 0.1 -0.42 -0.42
Bias (Third Party} 0.1 0.1 0.1 0.1 -0.42 -0.42
Limits Lower 265 265 265 2E5 2E5 265
Voids Upper 5.35 5.35 5.35 5.35 5.35 5.35
Comparision [N = 1 Comparison 12 12 1.2 1.2 12 1.2
Specs N = 3 Comparison 1 1 1 1 1 1
Number of plotting points (%) 25 25 25 25 25 25
Increase in Point Density For Peaks 7 7 i i i 7
L owest Woids to be plotted 1 1 1 1 1 1
Highest Woids to be plotted 8 8 8 8 8 5]
|Remove Bias & Analyze? {Y=1, N=0}] 1 |
Desired Precision No. of Runs
Crude 100
Low 1000
Medium 5000
High 10000
Confidence Interval Choice % Cl
1 85%
2 90%
3 95%
4 99%

Figure 2.4: Snapshot from Excel interface for SRA
(3) When the run is over, a file named “PF.csv” will be generated and placed in
the working directory. The user can open this file in MS Excel. The output file

“PF.csv” has the following three parts:

(a) The values of all the input parameters used in the simulation.
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(b) The Main output of risk estimates. This section has output in 26
columns. The first 14 columns correspond to the analysis using
data with relative bias, and the next 14 columns correspond to
the data from which relative bias has been removed. This
second set of output columns would not be generated if the
user chooses not to analyze the data after removal of relative
bias. In each set of output the first four columns are mean
quality characteristic values and corresponding mean, lower
confidence limit and upper confidence limit for payment risk
determined. The 5™ and 10™ columns are the same as the first
column and have been repeated to facilitate plot generation.
The next four columns (6™ to 9™ columns) give the percentage
of cases when: the N=1 comparison passes; the contractor
accepts the district results; the N=3 comparison passes, and;
the N=3 comparison fails, respectively. The 11" to 14"
columns give the ideal pay, mean actual pay and upper and
lower confidence limits on actual pay respectively. These two
sets of values would give an idea of how much risk can be
reduced if the relative bias is removed from the data before
actually applying the specifications for pay factor calculations.

Outputs (a) and (b) are repeated for each case presented for
analysis by the user.

(c) The third part of the output comes at the end of the PF.csv file.
This gives the summary results from all the runs. This has two
sets of results. The first set corresponds to the data simulated
with bias. The second set corresponds to the data from which
relative bias has been removed. The summary results in each
set include maximum positive risk, maximum negative risk and
Narrow Risk Band. The Narrow Risk Band concept will be
explained in the next chapter.
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CHAPTER 3

Analysis of IDOT End Result Specifications

This chapter presents detailed results from risk analyses performed using the SRA
program on data collected by IDOT on ERS projects, primarily between 2000 and 2004. SRA
has functionality at two distinct levels: 1) as an analysis tool at the standard user’s level, and 2)
as a research tool for more in-depth analysis and development of end result specifications. This
chapter presents results of risk analyses which describe and explore:

e Typical results and plots from SRA and recommendations for interpretation of
results;

e [Estimated payment risks associated with IDOT’s 2004 ERS specification;

e Capped versus uncapped pay factor equations, and;

e Two possible strategies for reducing contractor in-situ density testing without
significantly increasing risk.

Use of SRA at the Standard User’s Level

The following sensitivity analysis was carried out to determine how production variability,
measurement variability, bias, and sample size affect risk. The analysis was extended to
determine how these factors affect each other’s effect on risk, i.e., interaction effects.

Sensitivity Analysis

The factors that were included in this analysis are

(1) Production Variability

(2) Measurement/ Device Variability
(3) Bias

(4) N (Number of samples in the job)

A set of simulations were run with the values of the factors given in Table 3.1. Two
levels were chosen for each factor. Rather extreme values were intentionally chosen to
clearly demonstrate the direction in which risk changes with the change in that factor. Also,
the factors have been chosen in such a way that with further analysis the interaction of
effect of one factor with another factor, or factors, can be determined using experimental
design principles.
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Table 3.1: Parameter values used in the sensitivity analysis with SRA

Bias
N Rug Oprod Omeas Contract A Third n
umber p ontractor gency Party
1 0.3 0.2 0 0 0 15
2 0.8 0.2 0 0 0 15
3 0.3 0.5 0 0 0 15
4 0.8 0.5 0 0 0 15
5 0.3 0.2 0.4 -0.4 -0.4 15
6 0.8 0.2 0.4 -04 -04 15
7 0.3 0.5 0.4 -0.4 -0.4 15
8 0.8 0.5 0.4 -0.4 -0.4 15
9 0.3 0.2 0 0 0 40
10 0.8 0.2 0 0 0 40
11 0.3 0.5 0 0 0 40
12 0.8 0.5 0 0 0 40
13 0.3 0.2 0.4 -04 -04 40
14 0.8 0.2 0.4 -04 -04 40
15 0.3 0.5 0.4 -0.4 -0.4 40
16 0.8 0.5 0.4 -04 -04 40

Figures 3.1-3.4 show the output from these runs. These plots give the mean
payment risk and confidence interval. The plots have been arranged in groups of four.
Each group of plots has only two parameters varying and the other two parameters are
held constant. Between left and right plots in each set production variability has been
varied, and likewise between the top and bottom plots measurement variability has been
varied. Bias has been increased in sets of plots in Figures 3.2 and 3.4 as compared to
those in Figures 3.1 and 3.3 respectively. Between the first two sets of plots and last
two sets, the number of measurements used per job has been increased from 15 to 40.

Since the SRA program provides new results that have been previously
unavailable to the pavement engineering community, the analysis of risk plots deserves
introductory comments and suggestions. So before a detailed discussion of the
aforementioned simulation runs are presented, below are some suggestions and
concepts to bear in mind when interpreting risk plots:

e The results have been plotted along a range of values for the quality
characteristics, i.e., percent density (% Gmm). The way to interpret the results is
to think of each discrete location along the plot as an ERS job which ended with
a mean value for that quality characteristic of that particular value. For that
given mean of production, along with the other parameters used in the
simulation run, one can then see the expected average pay (over the long run, if
one could evaluate similar jobs with a similar mean) and the confidence
interval, which helps describe the range of variability that can be expected from
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job-to-job within those particular characteristics. It is easy to mistakenly get an
overly pessimistic view of ERS risk when analyzing risk plots for individual
factors. In reality, several quality characteristics are included in the pay factor
equation (three currently in Illinois), and usually most of these quality
characteristics will be produced within the Narrow Risk Band (see the following
section), thereby reducing the overall payment risk for the job.

Measurement variability tends to create large “vertical spikes” in the risk plot in
the vicinity of the USL and LSL (cf. Figure 3.5). In general, these spikes are
symmetrical with respect to the middle of the specification limit. So focusing
attention on the LSL, for instance, as the average production decreases from the
middle of the specification range towards the LSL, the contractor risk begins to
increase very suddenly (risk becomes more negative due to increased chance of
under pay). The risk reaches a maximum absolute value (local minimum on the
plot), then recovers and crosses the zero point at the LSL (except when bias is
present) and reverses in magnitude towards positive (agency risk) as the average
production moves below the LSL. A simple way to think about this is that
measurement variability creates pure error, which greatly increases risk when
the average production is near the specification limits. This is because the
measurement variability artificially inflates the overall measured standard
deviation (as compared to actual production variability), which puts the
contractor in more jeopardy when production is just within the specification
limits, and puts the agency in more jeopardy when production is just outside the
specification limits. The normal distribution curve has the most area in the
middle of the curve, and hence, measurement variability has the largest impact
on risk when the normal distribution is nearly centered on the specification
limit. For example, the normal curve may be slightly to the left of the LSL due
to random measurement fluctuations when it should have been slightly to the
right, creating a relatively large pay factor error or risk.

The level of production variability can affect the importance of measurement
variability. In general, it is best if measurement variability is small as compared
with production variability. When this occurs, the effect of measurement
variability on risk near the specification limits is greatly minimized.

Simple bias creates non-symmetrical risk plots and increases overall risk. The
non-symmetries result from the fact that a simple, one-way bias (such as
calibration error) will tend to decrease the risk for a given party on one side of
the risk plot (pushing values towards the target), but tend to increase that party’s
risk on the other side of the plot (pushing values away from the target). Similar
to measurement variability, bias is not an indicator of the real pavement’s
quality, so it leads to appreciable increase in risk.

It should be noted that a second type of bias, not directly addressed in this study,
can exist. This would be the case where a party intentionally biases all
measurements towards the target (middle of spec limits). In this case, the risk
for the other party (non-biasing party) would be increased at both specification
limits. QA comparisons and QA policies would help minimize this problem.
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Returning to the results of the simulation study, as presented in Figures 3.1-3.5, some of the
salient points observed from the simulation results are as follows:

o As production variability is increased the risk becomes more distributed over
the range. In other words a “Narrow Risk Band,” or the extent of production
averages in which the confidence interval of risk is very small or zero, is
reduced with increasing production variability. For lower production variability
the risk plot has sharper peaks near the acceptance limits and confidence limits
are generally narrower in the middle.

o As measurement variability is increased confidence limits on payment risk, in
general, become wider. But this widening of the confidence limits also depends
on the production variability present. The increase is very significant when
production variability is low and nearly insignificant when production
variability is very high.

e Increase in measurement variability has a more profound effect on the mean risk
than the confidence interval. If, in a particular case with low measurement
variability the mean risk is close to zero, there is a significant increase in the
mean risk with increased measurement variability. This signifies that the
probability of contractor underpayment (in the case of negative mean risk) or
agency overpayment to the contractor (in case of positive mean risk) is very
high.

e Increase in bias induces significant increase in risk. This can change the
magnitude as well as sign of risks involved, as compared to the data without
bias. Interestingly the effect of bias is more significant when production
variability is low than the case when production variability is high. One
explanation of this phenomenon could be that increase in production variability
induces variability in the data used for calculating base line pay as well.
Therefore, the larger differences due to bias get overshadowed by the large
production variability, leading to a smaller difference between ideal and actual
pay.

e An increase in the number of measurements in the job always narrows the
confidence interval width in the risk plot significantly. The magnitude of
reduction in risk is higher when the data have higher production and
measurement variability.

33



Risk (% Bid Amount) —»

Oprod = 0.30 Gmeas = 0.20 N=15 Bias =Low Gpra=0.80 Gmeas = 0.20 Bias = Low

30 X 30

25 - 25

20 Upper Confidence Limit 20 A

12 Mean Risk 1(5) |

0 0

-5 -5
10 10 o VIR NVIIVIIVERY
-15 — -15 -
20 | Lower Confidence Limit 20 |
-25 -25
-30 ‘ ‘ X -30

USL
2 4 6 2
Oprod = 0.30 Omeas = 0.50 N=15 Bias =Low Gproa=0.80 Omeas = 0.50 Bias = Low

30 30

25 - 25 |

20 - 20 A

15 15 |

10 7 10 +

5 4 p 5 ,W

0 4 < 0 !W
-10 - -10 ¢
15 - 15 |
-20 - -20
-25 - -25
-30 ‘ ‘ -30

2 4 5 6 2

Air Voids (%) —»
Figure 3.1: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits)
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Figure 3.2: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits)
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Fig 3.3: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits)
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Fig 3.4: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits)
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The previous section demonstrated the typical risks involved in ERS, as predicted
by SRA, and how typical ERS parameters like sample size and bias affect this risk. It is
desirable to use SRA in the design and adjustment of an ERS such that targeted risk levels
are achieved while minimizing testing burden and limiting the potential for disputes and the
need for third-party testing. To accomplish this, one approach would be to repeatedly run
the simulation program and manually determine the parameter values giving lower risk.
This would, however, require appreciable expertise on the part of the user. Therefore, it is
desirable to have a computational tool which does this for the user. This in turn necessitates
that the SRA results be further analyzed to produce objective quantities rather than just
trends. Three ways were identified in which SRA risk results can be quantitatively
characterized. They are:

(1)Maximum risk: This represents the peaks in the plots and gives the maximum
amount of risk for the given set of parameter values within specification
limits. It is notable that it would be more appropriate to use the peaks of
confidence intervals rather than those of the mean risks. This is because there
is a 50% possibility that risk would be greater than mean risk. Maximum
positive risk (MPR) would represent the risk for the agency and maximum
negative risk (MNR) would represent the risk for the contractor.
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Figure 3.5a: Concept of Maximum Positive and Negative Risk

(2) Narrow risk band (NRB): It is defined as the range of the quality characteristic
(i.e. voids, AC or Density) within specification limits where width of 90%
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confidence interval for risk is less than 5%. Figure 3.5 illustrates this

characteristic.
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Figure 3.5b: Concept of Narrow Risk Band (NRB) and Area of Risk Envelope

(3) Composite Risk Index (CRI): Visual observation of the risk plot provides vital
information about its characteristics. But comparing different risk plots is
somewhat subjective. A Composite Risk Index (CRI) was developed which
can characterize a full risk plot and could be used for objectively comparing
risk plots from different scenarios of variabilities as well as different types of
specifications. CRI is calculated in two steps. In the first step 200 equidistant
quality characteristic values are identified within the specification limits. At
each of these points 100 representative evaluations of risk (as done in a Monte
Carlo based simulation) are picked and their moment is taken about the zero
risk line. Taking moments ensures that higher risk values contribute more to
overall risk. A reasonable amount of risk at any point is somewhat acceptable.
But higher risks certainly throw a red flag because that may lead to more
disputes and strained relationships between the contractor and the agency.
Finally all the moment values are averaged. This represents the point risk
index. In the second step all the point risk indices are averaged across the
specification limit window, giving higher weights to those towards the middle
of the window. Varying weights penalize a specification or scenario in which
higher payment risks are expected, even when the contractor is quite close to
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the target or the middle of the window. The weights were determined by
extensive analysis with the goal of keeping CRI sensitive to spatial location of
the data while balancing its effect on CRI because of other factors.

The set of 16 experimental runs were repeated 4 times to obtain replicate values for
calculation of standard errors. Table 3.2 gives the mean values of the abovementioned
parameters for each experiment. The change that is observed in the risk level as a result of
the parameter value going from the lower to upper level can be quantified using the
principles of experimental design. This change is technically termed as “effect of
parameter.” Table 3.3 shows the calculated effects for each of the parameters. Effects
related to a single parameter (i.e., X1, X2, etc.) are referred to as a main effect of that
parameter. When two or more parameters are involved then it is referred to as an
interaction effect.

A negative effect for maximum positive risk means that the maximum risk for the
agency will decrease with an increase in that parameter value. Conversely, a negative effect
for maximum negative risk would mean that maximum risk for the contractor would
increase. Some of the conclusions that can be derived from the table of effects are:

o Effect of increase in production variability on the maximum positive risk is negative,
and on the maximum negative risk the effect is positive. Therefore, the increase in
production variability actually brings the risk down for the agency as well as the
contractor. Because of higher variability in production the contractor will rightfully
receive lower payment. So, although the payment will be lower it is justified and hence
the risk of incorrect payment is low. Another way to look at it would be that increased
production variability tends to desensitize the effect of measurement variability, as
mentioned previously.

e The extent of the narrow risk band decreases with increase in production variability.
Recall that the narrow risk band represents the area where maximum pay is deserved
(100 PWL is achieved) and where the probability of an estimated PWL below 100 is
negligible. In other words, if production variability is high, then even for production
averaging in the middle of the specification limits there is possibility of payment risk.
When the production variability is low, then maximum pay will almost certainly be
awarded when it is deserved.

e Looking at the main effect of measurement variability on maximum positive risk may
indicate that MPR goes down as measurement variability becomes higher. But there is
another factor that must be considered here. Bias has the most significant effect on
MPR and bias has significant negative interaction with effect of measurement
variability. Also, the main effect of bias is positive and much greater in magnitude than
that of measurement variability. Therefore, the interaction effect coming from bias can
overshadow the effect of measurement variability on MPR. When plots with zero (or
low) bias are observed it is clear that an increase in measurement variability increases
MPR, especially when production variability is low. The same logic holds for MNR as
well.

« Bias has significantly higher effect on the maximum positive and negative risk, both of
which increase with increase in bias.
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e Increase in bias also reduces the width of narrow risk band. However the effect is
relatively much smaller than that caused by increases in measurement variability or
production variability.

e Increase in number of samples in the job, N, appreciably narrows the 90% confidence
interval. This would also translate into a slight increase in NRB if the envelope is near
the zero risk line. The decrease in the magnitude of risk generally decreases with the
square root of N, as intuitively expected.

e The interaction of production and measurement variability does not have appreciable
effect on maximum positive or negative risk.

e Production variability and bias have an appreciable effect on maximum positive and
negative risk, but a much smaller effect on the extent of the narrow risk band.

During the replicate runs it was observed that the risk values, as well as all the risk plot
characteristic values, had absolutely no variation up to the second decimal place. This
provided confidence that the results obtained were very repeatable, i.e., effect estimates are
very precise and would not vary from one run to another. This is not a trivial matter, since
simulation programs can sometimes be affected by imperfections in random number
generation and the number of simulations required for a stable result will vary from
problem to problem.
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Table 3.2: Mean values of risk characteristics for data with bias

Run Bias Max Neg | Max Pos
Number | @ prod | O meas [Contractor] District[Thparty] " | NRB | Risk | Risk | CR' | Area
1 03 | 02 0 0 0 | 15| 138 | 902 | 884 | 2.18 | 12.88
2 08 | 02 0 0 0 |15] 0.00 | -899 | 888 | 610 | 21.73
3 03 | 05 0 0 0 | 15] 050 | 1248 | 927 | 572 | 17.99
4 08 | 05 0 0 0 |15] 0.00 | 940 | 870 | 7.33 | 2263
5 03 | 02 04 04 | 04 |15] 123 | 2760 | 23.25 | 9.88 | 16.66
6 08 | 02 04 04 | 04 |[15] 000 | 17.32 | 1712 | 10.15] 22.60
7 03 | 05 04 04 | 04 |15] 0.00 | 2260 | 1854 | 9.72 | 25.65
8 08 | 05 04 04 | 04 | 15| 0.00 | 1469 | 14.38 | 9.56 | 26.14
9 03 | 02 0 0 0 |40| 164 | 524 | 560 | 1.30 | 7.88
10 08 | 02 0 0 0 |40] 000 | 533 | 533 | 3.90 | 13.22
11 03 | 05 0 0 0 |40 1.01 | -9.41 596 | 479 | 11.03
12 08 | 05 0 0 0 |40] 0.00 | 640 | 544 | 516 | 13.74
13 03 | 02 04 04 | 04 |40 146 | 2418 | 2155 | 9.50 | 10.69
14 08 | 02 04 04 | 04 |40 0.00 | 13.78 | 13.70 | 8.98 | 13.93
15 03 | 05 04 04 | 04 |40 058 | 17.41 | 14.92 | 8.33 | 15.91
16 08 | 05 0.4 04 | 04 |40] 0.00 | -10.76 | 10.82 | 7.57 | 15.97

Key: District — Agency; NRB — Negative risk band; CRI — Composite Risk Index.

Table 3.3: Effects of the parameters on payment risk for biased data

Parameter NRB lV.Iz.aX|mum RIS!( CRI Area
Positive |Negative

X1 Sig-Prod -1.28 -2.95 5.16 0.92 3.91
X2 Sig-Dev -0.68 -2.03 1.04 0.77 3.69
X3 Bias -0.05 9.53 -10.26 4.65 3.30
X4 n 0.37 -3.21 3.70 -1.39 -7.99
X1 X2 0.44 0.61 0.00 -0.65 -1.93
X1 X3 0.11 -2.62 3.65 -1.21 -1.47
X1 X4 -0.13 -0.24 -0.17 -0.49 -1.07
X2 X3 -0.05 -2.21 3.32 -1.61 1.27
X2 X4 -0.04 -0.23 0.10 -0.23 -0.95
X3 X4 0.02 0.13 0.32 0.16 -0.65
X1 X2 X3 -0.01 0.82 -1.53 0.48 -0.22
X1 X2 X4 -0.20 0.27 -0.17 0.04 0.48
X1 X3 X4 0.04 -0.18 -0.12 0.15 0.29
X2 X3 X4 0.03 -0.29 0.44 -0.23 -0.37

Key: NRB — Negative risk band;

Deviation of Produced Material; Sig-Dev — Standard Deviation of Measurement

Device.
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Use of SRA as a Research Tool

At the standard user’s level, sensitivity analyses can easily be conducted with SRA to
examine effecs of a number of user-modifiable parameters on specification risk, as described in
the previous section. Parameters which are not user-modifiable from the standard program
interface are fixed at those used in IDOT’s current ERS specification. For example the SRA
program does not allow changes to the pay factor equation from the standard interface. But the
advanced user of SRA can modify the code as required for the analysis, thereby enabling almost
unlimited specification approaches to be analyzed. Thus, the analyst would be able to compare
the risk characteristics of entire specification systems. The following is an example of a research-
level risk analysis conducted using SRA.

Advanced Risk Analysis with SRA

Example #1. Pay Factor Equation
In 2004 IDOT modified its pay factor equation from (3) to (4).
PF=055+05* PWL (But, if PF>1.03, then PF = 1.03) 3)
PF=0.53+ 0.5* PWL 4)

Where:
PF = Pay Factor (%)
PWL = Percent Within Limits

Thus, starting in 2003 the pay factor equation was modified to be more stringent (lower pay for a
given PWL level). The payment cap was no longer used, since the maximum pay given directly
by the formula was 103%.

A series of simulation runs were carried out using SRA to investigate the impact that this
change would have on IDOT ERS pay factors and the associated payment risk. The example
presented here uses combined and measurement variability, estimated from several ERS
demonstration projects. First, a brief description of the method for estimating combined and
measurement variability is presented, with the help of an example. In Table 3.4 the columns
labeled as “Measured” are the field core densities measured in ERS projects. For each job the
density values are averaged to arrive at a mean. Then the difference between the first mean
(contractor mean for job 1 in this case) and the mean for each job is subtracted from the
measured density to obtain a normalized density. By normalizing the means from each job, it is
then possible to combine or ‘pool’ the data sets in order to obtain a robust estimate of the
variability in measured pavement density (combined variability of measurement, production, and
laydown). In this example the combined variability was found to be 0.85. In the full analysis,
hundreds of such measurements have been taken from ERS demonstration projects in Illinois
over the past five years, as will be summarized below.
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Table 3.4: Example calculations for estimating combined variability

Job Contractor Density District Density
Measured Mean Normalized Measured Mean Normalized
93.6 93.6 93.8 93.5
93.1 93.1 92.6 92.3
94.7 94.7 94.7 94.4
93.3 93.3 93.8 93.5
1 92.7 93.4 92.7 92.8 936 92.6
93.3 93.3 93.9 93.6
93.0 93.0 93.5 93.2
94.4 94.4 94.7 94.4
92.6 92.6 93.1 92.8
92.9 92.9 93.6 93.3
91.5 92.0 90.9 91.7
91.5 91.9 91.9 92.6
93.6 94.0 94.0 94.7
94.3 94.7 94.1 94.9
2 93.3 92.9 93.8 92.5 92.6 93.3
92.9 934 91.5 92.2
93.0 934 92.6 93.3
93.2 93.6 93.6 94.3
Combined Standard Deviation = 0.85

Table 3.5 presents an example for calculation of the variability associated with the
measurement of density. In this case, only a small number of pairs of data has been presented to
quickly illustrate the concept. In reality mostly the number of measurements would be anywhere
between 100 and 250. The columns labeled “Contractor” and “District” (the agency) report the
densities measured by each of these two parties. The next column is the difference of these two
densities. It should be noted that each pair of densities is measured on split samples. Therefore
the difference between them is expected to be predominantly composed of measurement
variability and bias present in the data. The mean value of the differences for each job gives an
estimate of the bias present. To remove this relative bias, the mean of differences is subtracted
from the individual differences found to produce normalized differences. The normalized
differences are then sorted to identify outliers. Outliers are generally identified as those
normalized difference values which lie farther than three times the standard deviation of the
normalized differences from their mean. Since the density measurements are expected to be
normally distributed, the differences also should be normally distributed and hence this
definition of outliers is retained. The standard deviation of the normalized differences from
which outliers have been removed provide an estimate of the measured variability as discussed in
the preceding section. In the example presented here the standard deviation of the normalized
differences was found to be 0.50. Therefore, measurement variability for this set of paired tests
can be found as follows.
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As stated earlier actual measurement variability is estimated using hundreds of such data points.

o

Table 3.5: Example calculations for measurement variability

- . . Normalized |Norm. Diff. In] Std. Dev
Job Contractor District Difference | Mean of Diff. Diff. Asc. ord. | of NDAO
93.6 93.8 -0.2 0.1 -0.7
93.1 92.6 0.5 0.8 -0.7
94.7 94.7 0.1 0.4 -0.7
93.3 93.8 -0.5 -0.2 -0.4
1 92.7 92.8 -0.2 0.3 0.1 -0.3
93.3 93.9 -0.6 -0.3 -0.3
93.0 93.5 -0.5 -0.2 -0.2
94.4 94.7 -0.3 0.0 -0.2
92.6 93.1 -0.5 -0.3 -0.1 0.50
92.9 93.6 -0.7 -0.4 0.0
91.5 90.9 0.6 0.3 0.1
91.5 91.9 -0.4 -0.7 0.1
93.6 94.0 -0.4 -0.7 0.1
2 94.3 94 .1 0.2 0.3 -0.1 0.3
93.3 92.5 0.8 0.5 0.4
92.9 91.5 1.4 1.2 0.5
93.0 92.6 0.4 0.1 0.8
93.2 93.6 -0.4 -0.7 1.2

Key: NDAO — Normalized Difference in Ascending Order.

Using data from several ERS demonstration projects from the years 2000 to 2002, the following
measures of in situ density variation were obtained:

e Combined variability = 1.15%, where ‘%’ refers to percentage of max theoretical specific
gravity, Gmm
e Measurement variability = 0.56%

For combined variability, the highest value for a given project was found to be 1.45% and the
lowest was 0.85 %.

The total number of samples (N) cored for measuring density in ERS demonstration
projects have varied between 100 and 250. Therefore, different simulations were run with N =
50, 100 and 200. Therefore, nine simulations were run using the old pay factor equation and then
repeated using the new PF equation. Table 3.6 presents all the combinations of parameters used
in the analysis.
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Table 3.6: Parameter values used in simulation runs for the analysis

Sim. Run Combined Production Measurement Total # Samples
# Variability Variability (o-p) Variability (og-m) (N)
1 0.85 0.64 0.56 50
2 1.15 1.00 0.56 50
3 1.45 1.34 0.56 50
4 0.85 0.64 0.56 100
5 1.15 1.00 0.56 100
6 1.45 1.34 0.56 100
7 0.85 0.64 0.56 200
8 1.15 1.00 0.56 200
9 1.45 1.34 0.56 200

Results of Pay Factor Analysis

Figures 3.6-3.14 present the risk plots, from the simulation runs evaluating IDOT’s

Superpave asphalt ERS, under the older and newer pay factor equation. One challenge of
simulation modeling is developing a systematic scheme for the analysis of the enormous number
of results that are generated. The present analysis is further complicated by the fact that some of
the simulation outputs, such as the risk factor, are new concepts and therefore not familiar to
most readers. To assist the reader, a detailed summary is presented to outline and describe the
scheme used herein to present standard “sets” of simulation results:

The plots on the left half of the page show the actual (simulated) mean pay determined by
the simulation for all mean densities, along with its 90% confidence interval (CI). They
also show the base line pay or ideal pay, in a thick solid line. With this plot it can be
readily observed how the average and +/- 90% CI of pay levels would vary for different
projects (with different variabilities) as a function of the mean density. A baseline pay
below the mean pay line represents agency risk, as the agency would be paying above the
correct pay in this instance. The parts of the plot where these lines either cross or merge
with each other represents balanced risk for both parties. However, if the ideal pay line
goes above the mean pay line there is higher probability that the contractor would be
underpaid relative to the correct pay, i.e., contractor risk. The probability of risk in either
case can be observed based on the distance of the ideal pay line from the confidence
intervals for the mean pay.

The plots on the left half of the page are the risk plots (as described earlier in the report),
which result after replotting the curves on the left after normalizing relative to the
baseline (or correct) pay.

The first row of plots in each set of plots (top two) represents the analysis using the new
pay factor equation and the second row of plots (bottom two) correspond to the old pay
factor equation.
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New PF Equation Measurement Variability = 0.56 Production Variability = 0.64 N =50
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Figure. 3.6: Analysis results for low production variability and low number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 1.00 N =50
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Figure. 3.7: Analysis results for medium production variability and low number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 1.34 N =50

105 10
100 - 8]
— = 6 1
€ 95 - S 4] I
3 3 *
£ - < 2
S =] E -
D g5 | @ MR o o e o e o o o o
2 & 2
& 80 ) 5 -4 M
L Y. o -6 -
75 - =
, -8 -
70 T T T T T _10 T - - T T
91.5 92.5 93.5 . 94.5 95.5 96.5 915 925 93.5 94.5 95.5 96.5
Density (% Gmm) Density (%Gmm)
Mean-PF - - - - - LCL-PF — — — UCL-PF —»—Base Line —o— Mean Risk —»— UCL-Risk —o— UCL-Risk
105 10
8 i
100 -
— = 6 1
c 95 g 4 -
E 90 < 2
2 CHEN I g o SN G- ap DNDURNDE o, g
@ g5, a
2 . X -2
. i~ |
& 01 . e _2 M%
75 o i
-8 4
70 ! ! ! ! ! '10 T T T T T
91.5 92.5 935 945 95.5 96.5 915 05 935 945 95.5 96.5
Density (% Gmm) Density (%Gmm)
Mean-PF - - - - - LCL-PF — — — UCL-PF —»—Base Line —&— Mean-Risk —>— L CL-Risk —o— UCL-Risk
Old PF Equation Measurement Variability = 0.56 Production Variability = 1.34 N =250

Figure. 3.8: Analysis results for high production variability and low number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 0.64 N =100
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Figure. 3.9: Analysis results for low production variability and medium number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 1.00 N =100
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Figure. 3.10: Analysis results for medium production variability and medium number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 1.34 N =100
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Figure. 3.11: Analysis results for high production variability and medium number of specimens: old vs. new PF equation
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New PF Equation

Measurement Variability = 0.56

Production Variability = 0.64

N =200
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Figure. 3.12: Analysis results for low production variability and large number of specimens: old vs. new PF equation
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New PF Equation

Measurement Variability = 0.56

Production Variability = 1.00 N =200
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Figure. 3.13: Analysis results for medium production variability and large number of specimens: old vs. new PF equation
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New PF Equation Measurement Variability = 0.56 Production Variability = 1.34 N =200
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Figure. 3.14: Analysis results for high production variability and large number of specimens: old vs. new PF equation
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Measurement Variability = 0.53

Production Variability = 0.60
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Discussion of Pay Factor Analysis Results
The simulation results presented in Figures 3.6-3.15 can be summarized as follows:

e As expected, the plots show a clear downward shift in the actual payment, baseline
payment, and upper and lower confidence limits for the new pay factor equation relative
to the old PF equation. This can be observed by comparing either the vertically aligned
plots on the left-hand side of a given page, or the vertically aligned plots on the right-
hand side of a given page.

e There is an appreciable difference in the width of the narrow risk band. The narrow risk
band was reduced in all the cases. As apparent in the left-hand plots, in the old pay factor
equation the final pay was capped at 103%, although the maximum pay calculated using
the equation was 105%. Therefore, once the ideal pay or baseline (represented by the
thick solid line in the middle plots) reached 103%, any further increase in density towards
the middle of the spec limits (and thus improved the PWL), did not improve the PF above
103%. Therefore, in these areas there is no difference between the baseline pay and the
actual pay leading to low or no risk, which constitutes the narrow risk band. But with the
new pay factor equation, pay cap is no longer in effect. Therefore, the difference between
baseline pay and actual pay, if any, would continue until maximum pay is reached.

e In the case of either of the pay factor equations, as the number of specimen tested (N) is
increased, the confidence interval for pay as well as for risk becomes narrower around the
corresponding mean values. Therefore, the advantage of using more samples to reduce
probability of risk remains intact with the modification of the pay factor equation.

e It should be noted that in the case of analysis performed on voids (Figure 3.15), the
simulation results are presented in a different arrangement compared to that used for the
density simulations (Figures 3.6-3.14). The two rows of vertically aligned plots on the
page for Figure 3.15 allow a comparison of sample size, corresponding to cases with
N=10 and N=20, respectively. In this case all the plots correspond to the new PF
equation. Also the measurement and production variabilities for these simulation runs
were calculated using the voids data from ERS demonstration projects (as described in
the previous section) and found to be 0.53 and 0.60, respectively.

e The most prominent feature in the plots of voids in Figure 3.15 are, that although the
mean risk is similar in magnitude, the confidence intervals are much wider and the peak
of confidence interval goes as high as 12.5% pay. This can also be deduced from the left-
hand side plots which show that the confidence interval on the actual pay is
comparatively much wider. Therefore, the difference between the ideal pay line and the
confidence interval lines is also greater. Although the tolerance limits for density and
voids comparison are the same, the number of samples tested in the case of voids is
generally much smaller, leading to higher risk levels.

e The higher ratio of measurement variability relative to production variability in the case
of voids also creates a larger confidence interval on payment risk.

The key conclusions that can be deduced from this analysis are:
(1) The absence of a payment cap in the new PF equation has the effect of reducing the

narrow risk band for the specification. This may tend to increase the likelihood of a
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dispute between parties, since the contractor risk is higher. The main motivation for
changing the pay factor equation was to bring the actual project pay more in line with pay
levels deemed appropriate, based upon an IDOT internal review of demonstration
projects. To this end, other methods of arriving at a lower pay factor can also be
explored, which may not have the same effect of reducing the narrow risk band. One
example would be to alter the way in which pay factors are combined, such as using the
lower of the two plant test pay factors instead of using the average. Another possibility
would be to use a multiplicative approach to combining some or all of the pay factors,
which would avoid the “averaging out” of a low pay factor with one or two higher pay
factors. Currently IDOT uses 30% of the asphalt content PF, 30% of the PF on voids
from gyratory compacted specimens in the plant, and 40% of the PF for field density as
measured from cores.

(2) Payment risks are higher for air void measurements as compared to field density.
This is due to two factors: (i) the reduced number of samples tested, and (ii) the higher
ratio of measurement variability as compared to production variability. Since the
production variability levels seem reasonable, the primary area of concern is the
measurement variability for this parameter. Efforts to reduce the measurement variability
associated with plant voids will pay large dividends in terms of reducing payment risks
and therefore reducing the possibility for disputes.

Example #2: Reducing Sample Sze of In-Stu Density Testing

Larger sample sizes provide higher confidence in computed averages and standard
deviations and thus better estimates of pay factor. This means that payment risk also would be
lower, as has been demonstrated through sensitivity analysis. But larger sample size means more
sampling and testing which translates into higher personnel needs and higher costs. In addition,
for the case of in-situ density measurement, the larger sample produces destructive core holes in
the pavement, which even though filled with patching material, will not perform as well as
undisturbed pavement. IDOT as well as the highway contractors have shown keen interest in
exploring the possibility of reducing the sample size in the case of in-situ density testing, if
possible, without significantly increasing risk.

Since payment risk is affected by several factors, e.g, sample size, tolerance limits, and
quality level analysis procedure, there could be several ways to adjust the other factors so that
the risk can be maintained within a certain acceptable level. Following are two such cases which
demonstrate that it is possible to reduce sample size, although to a limited degree, without
appreciably increasing payment risk.

Exploratory Analysis for Reduced Sample Size

This section presents the results of two analyses aimed at exploring ways to reduce
sample size in IDOT’s asphalt ERS. The two approaches are:

(1) Reduction of contractor sample size, similar QA testing amount
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(2) Reduction of number of cores across mat from 5 to 3.

Approach 1: Reduction of contractor sample size and similar QA testing amount

Figure 3.16 (a) shows a typical risk plot when analysis is done for in-situ density. The
results correspond to the 2003 ERS used by IDOT. Selected typical values that remain
unchanged in the analysis are as follows.

e Production variability = 0.40 %G,
e Measurement Variability = 0.75 %Gmm
e Bias = 0.0 for all the three parties

The plot shows risk corresponding to density between 91.5% and 97% Gmum. It should be
noted that within this range of density most risk is assumed by the contractor, while agency risk
is higher for production outside of the specification limits. The regions of higher agency risk are
outside of limits selected for plots. Here the focus is on the areas where the vast majority of most
production has been found to occur on the ERS projects in Illinois; that is, between the upper and
lower specification limits. The plot in Figure 3.16 (a) corresponds to a sample size of 90. The
plot shown to the right (Figure 3.16 (b)) shows the risk when the following two significant
changes are made:

e The number of samples have been reduced to one fifth i.e. N = 18
e Minimum QA testing has been increased to 100% as compared to 20% in the 2003
end result specifications of IDOT.

Following are the changes in the risk characteristics apparent from Figures 3.16 (b) as a result of
the two aforementioned changes in the 2003 ERS:

e Maximum negative risk (contractor risk) for the 90% confidence interval remains
almost the same

e The upper limit of the confidence interval has moved up from -5% to zero in the
middle while some portion was shifted into the positive (agency) risk region

e The maximum negative mean risk has decreased from -8% to -5%

In summary, in the original 2003 specifications for this particular case, the worst-case
scenario for a production average within the specification limits would lead to 5 to 11%
contractor underpayment of the bid amount, with 90% certainty. After the abovementioned
changes (reduction in sample size and narrowing of comparison limit), the underpayment in the
worst-case scenario would range between zero and 11% of the bid amount, with 90% certainty.
The overall payment risk is appreciably reduced for the contractor, while the agency risk is
slightly increased for jobs produced with overall average density within the specification limits.
This demonstrates that a much smaller contractor sample size can be used with minimal change
in risk for production averaging at a level between the specification limits. Also, although the
minimum QA test frequency has been increased by five times, the total number of QA tests
required by the state remains unchanged since the sample size was reduced by a factor of five.
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Figure 3.16: Effect of Reducing Contractor Sample Size and Narrowing Comparison Limits

A similar attempt was made to explore the possibility of reducing the sample size by the
same proportion for a smaller job where N = 60. The plots shown in Figures 3.16 (¢) and (d)
correspond to this. They show that although the negative mean risk has been reduced, the
maximum negative risk increased from -11.5% to -12.5%. The increased agency risk at the USL
and LSL to a rather high level of 15% makes a reduced sample size of 12 questionable. This
trend was even more pronounced for an analysis conducted with N = 30 and a reduced N of 6,
indicating a limit beyond which further reduction in sample size leads to unacceptable risk
levels. Nevertheless, the above analysis clearly suggests that the SRA tool can be used by the
agency to optimize ERS sampling sizes, balancing the relative tradeoffs between reduced
sampling and testing and increased agency.

Approach 2: Reduction of number of cores across mat fromfive to three
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The second strategy for reducing the contractor sample size consists of changing the
number of cores to be sampled across the mat for each sublot from 5 to 3 while still performing
QA tests on at least one of the three. The other parameter values are the same as those used in the
preceding example. Figure 3.17 (a) shows the risk plot expected when adhering to the 2003
ERS, while Figure 3.17 (b) shows the case when only three cores are taken across the mat. For
the reduced testing scheme, the maximum negative (contractor) risk has increased only slightly,
by -0.5%, as a result of this change. At the same time the upper limit of the 90% confidence
interval increased by 1%, thus widening the confidence interval slightly, similar to the results
found in approach #1. Once again, while the total number of cores would be greatly reduced (54
as compared to 90), the contractor risk is decreased on average and the agency risk is only
slightly increased. Figures 3.17 (c) and (d) show the case when sample size is reduced from 60
to 36, also showing a favorable reduction in sample size with relatively little change in risk.

Discussion of Reducing Sample Size Results

It should be noted that in all of the cases above, some additional risk is assumed by the
agency for the case of production averages outside of specification limits. This does not
commonly occur in practice since production outside of specification limits represents a PWL
below 50 and thus a pay factor below 80%, which would be highly undesirable for the
contractor. Nevertheless, the additional risk assumed by the agency must be considered when
evaluating the pros and cons of adopting the test reduction strategies outlined above. On the
other hand, these possible specification changes have the dual benefit of 1) reducing testing
burden (and pavement damage in the case of field density), and 2) slightly reducing contractor
average risk for production between the specification limits. Based upon this analysis, it seems
that the advantages outweigh the disadvantages and it would be advantageous for both parties
involved if the sample reduction strategies were employed.

Summary

This chapter presented example strategies to demonstrate research-oriented uses of SRA.
In general, SRA can be used to develop a better understanding of how changes in individual ERS
specification parameters can affect the payment risk for the contractor (seller) and agency
(buyer). This knowledge can be used to explore the possibility of developing desirable changes
in an existing ERS, such as reducing sample size, reducing risk, optimizing tolerance limits,
changing pay factor equations, and the pros and cons of pay factor equations with payment caps.
An analysis of the old and new IDOT pay factor equation for Superpave asphalt ERS was
conducted, which highlighted the pros and cons of the new pay factor formula. The absence of a
pay cap in the pay factor formula appears to create a slight increase in the risk levels in the IDOT
ERS system at the higher pay levels. A small, residual contractor risk throughout much of the
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Figure 3.17: Another possible strategy for reducing sample size

narrow risk band is present. Specific examples were presented of how IDOT’s existing ERS for
Superpave HMA could be modified to reduce contractor and agency testing. Two strategies
were presented which appear to be promising methods for reducing the number of field cores
required, while tending to balance risks between parties more equitably. This would also have
the benefit of reducing the amount of pavement damage caused by coring and patching of the
new pavement, resulting in enhanced pavement life and possibly even enhanced safety over the
pavement’s life.
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Chapter 4

Summary, Conclusions, and Recommendations

Summary

End-Result Specifications (ERS) for asphalt pavement construction offer potential
benefits over method-related specifications. They can be used in conjunction with or
replacement of traditional QC/QA specifications as a means to enhance contractor innovation,
reduce agency testing burden, and enhance overall pavement quality.  Unlike other
manufacturing sectors, the measure of pavement quality is not as simple as detecting and
quantifying defective items. The quality of pavements is assessed with imperfect measuring
tools operated by humans, who may inadvertently or intentionally introduce measurement
variability or bias. As a result, the ability to measure quality and assign appropriate payment
bonuses and penalties is an imperfect system.

Risk is a natural entity in just about every business enterprise, but in order to properly
utilize and administer a contractual process involving risk, one must first have an accurate
measure of that risk. In the past, existing methods for balancing risks in pavement construction-
related ERS contracts, including the AASHTO approach, did not properly consider all of the
factors affecting risk. Therefore, the administration of such contracts has carried the heavy
burden of loosely defined specification risk levels.

This report detailed the development of a simulation tool which can be used to analyze
specification risk and to develop ERS systems with user-managed risk levels. The program,
called Simulated Risk Analysis (SRA), computes the risk of overpayment (agency risk) or
underpayment (contractor risk) as a function of many factors, including: number of tests,
production and measurement variability, bias, pay formula and pay caps, and specification limits.
It also considers the quality assurance and third-party testing scheme used. In general, SRA can
be used to develop a better understanding of how changes in individual ERS specification
parameters can affect the payment risk for the contractor and agency. This knowledge can be
used to explore the possibility of developing desirable changes in an existing ERS, such as
reducing sample size, reducing risk, optimizing tolerance limits, changing pay factor equations,
and the pros and cons of pay factor equations with payment caps.

An analysis of the old and new IDOT pay factor equation for Superpave asphalt ERS was
conducted, which highlighted the pros and cons of the new pay factor formula. Specific
examples of how IDOT’s existing ERS for Superpave HMA could be modified to reduce
contractor and agency testing were presented. Two strategies were presented which appear to be
promising methods for reducing the number of field cores required, while tending to balance
risks between parties more equitably. This would also have the benefit of reducing the amount
of pavement damage caused by coring and patching of the new pavement, resulting in enhanced
pavement life and possibly even enhanced safety over the pavement’s life.
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Limitations of Current Simulation Programs

While the simulation models presented in this report were shown to provide significant
insight into the phenomena of payment risks involved with ERS systems, there are clearly
limitations to the models. Some of the key limitations are now discussed.

(1) Human factors in decision making: Any highway construction project, or testing
program, is subject to human decision making. An example of simple human decision
making that is considered in the SRA model is the logic of whether a contractor will
accept or reject district data depending on which result is closer to the specification
target. At the very best it can be accepted only as a simplified model as compared to how
complicated and dynamic human thinking can be in these situations. For example,
complex human decision making could arise when a material ERS is used in conjunction
with a lane-rental incentive/disincentive contract clause. Quality could possibly be
exchanged for expediency towards the end of a project if the magnitude of the lane rental
bonuses and penalties greatly exceed the ERS bonuses and penalties when a simple
additive or weighted averaging scheme is used for the combined pay factors. It is
impossible to develop computer logic to perfectly predict human decision making.

(2) Non-standard practices: All such construction projects are ultimately monitored and run
by human beings. Although efforts are made to standardize professional practices like
construction, testing, analysis and reporting, slight or appreciable deviations from such
practices are not unprecedented. Only the simplest forms of human error and bias can be
considered and/or detected, and therefore, it must be acknowledged that risk assessment
provides a useful estimate but not an exact value of specification risk. In extreme cases
the data may be willingly shaped in a particular way. It is almost impossible for a
mathematical or algorithmic model to simulate such phenomena. Rather than attempt to
model these complex situations, it is assumed that their occurrence is infrequent and can
be minimized through programs of quality compliance, inspection, and auditing.

(3) Normality assumption: Literature indicates that quality characteristics, e.g., in-situ
density, air void content, etc., in highway construction projects are generally normally
distributed. But this is an empirical observation and not a rigorously proven fact.
Therefore, simulations like ILLISIM or SRA, which are based on this assumption, may
not provide reliable results in cases where the data are actually not normally distributed.
For example, pavement density may be suddenly shifted during construction due to many
variables, including weather change, equipment or operator changes, or a change in the
rolling pattern. This would create a bimodal rather than a normal distribution. However,
this particular case has been studied and reported by Buttlar et al. [2001] to have a
relatively low impact on project pay factors.

In summary, it should be recognized that simulation results are indicative rather than
predictive. This means that these results should be used to guide decisions in general. But
they cannot be used to provide direct predictions for a particular project. It should also be
acknowledged that the level of risk for each party that will be viewed as acceptable are not
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fixed values and that higher contractor risk can translate into higher dispute rates and higher
bid estimates. Risk levels must be selected by the agency based upon many factors, such as
agency staffing limitations and expertise level, material and overall project costs, user-delay
costs, local contractor expertise, and level of competition between local contractors.

Conclusions
Based upon the results of this research, the following conclusions have been drawn:

1. End-Result Specifications for asphalt pavement construction involve non-negligible risk
to the agency and contractor due to the presence of measurement variability and testing
biases.

2. The SRA program provides realistic, repeatable measures of ERS risk, which can be used
to develop, analyze, and adjust ERS systems.

3. Based upon the analyses conducted in this study, it apprears to be feasible to significantly
reduce the number of pavement cores taken on higher tonnage Illinois ERS projects
without a significant impact on payment risk.

4. The absence of a pay cap in the ERS pay factor formula introduces a small, residual
contractor risk for production near the center of the specification limits based upon the
definition of risk adopted in this study.

Recommendations
Based upon the findings of this study, the following recommendations are made:

1. Since it appears that the number of pavement cores taken on Illinois ERS projects can be
reduced considerably without a significant impact on payment risk, it is recommended to
specify reduced number of cores and density measurements for future IDOT ERS
projects. Additional SRA modeling runs could be performed to fine-tune the number of
tests required.

2. As future changes are made to the ERS specification, the reinstatement of the pay factor
cap should be considered as a means to reduce risk levels at higher pay factors.

Recommended Areas for Future Work

1. Characterizing risk plots: Risk plots are plots of payment risk against mean value of a
certain quality characteristic. The range of the quality characteristic is generally the full
range of values that may occur in an actual project. Depending on the value of other
parameters such as production and measurement variability, and number of samples the
shape of the risk plot can change considerably. This change can be easily observed
visually. But to be able to subject this to rigorous mathematical analysis it is necessary to
characterize these plots in a quantifiable way. Then multiple sets of plots can be easily
compared. In this report such an attempt was made by identifying the maximum positive
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and negative risks across the range. But more such characteristics may be required for
more complete analysis, like area enclosed by the confidence limits within a certain width
of quality characteristic, etc.

2. Modeling human decision elements: If more of human decision elements involved in
actual highway construction projects can be included in the model, the results obtained
from the simulation may be more realistic. Such modeling is possible by tapping into the
experience of officials and professionals working on such projects.

3. More work can be done to determine in what situations the project data may not be
normally distributed. This would help identify possible cases where the simulation results
may not be applicable. Also, work can be done as to how the simulation results can be
modified in those cases.

4. Smoothness and thickness of the as-built pavement are also important characteristics in
determining payment to the contractor. Further study is needed to determine how best to
combine these pay factors with those associated with material quality.

Other Recommended Uses for the Current Simulation Program
With slight modifications, the SRA simulation program can also be used to develop or

modify ERS programs for soils and aggregates, Portland cement concrete pavements, and other
transportation materials and constructed facilities.
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APPENDIX Al

ILLISIM

University of Illinois researchers developed a computer simulation program, called
ILLISIM, to analyze the risks involved with end-result specifications (ERS). The detailed
assessment of agency and contractor risks possible through ILLISIM can assist in establishing
sampling protocols, measurement methods, specification limits, retest provisions, pay scales, and
pay caps in such a manner to balance the tradeoffs between number of samples and payment
risks, and hence disputes.

A flowchart describing a typical execution sequence in ILLISIM is given in Figure
Al.la-b. Based upon the assumption that construction and measurement variability can be
adequately approximated by a normal distribution curve (bell curve) [Hall (2002)], ILLISIM
randomly generates quality characteristics within given SUBLOTS and LOTS of material on a
paving job.

The user has the ability to determine how ILLISIM evaluates the source(s) of variability
depending on how easily individual sources of error can be identified. If a given characteristic
has separable, measurable sources of variability, the user can determine how each source
independently affects the determination of quality. Standard deviation is considered as an
estimate of the variability that is being mentioned in this report. Using density as an example,
ILLISIM can consider three individual elements of variability (longitudinal, transverse, and
measurement device). However, if the user wishes to analyze a database of historical
measurements from which no individual source of variability can be separated, one individual
standard deviation can be used to encompass all of the variability throughout the process.

Based upon the inputs, ILLISIM generates possible measurement readings that would be
encountered during construction, using random numbers and an inverse normal distribution
generation algorithm (Monte Carlo simulation). The inverse algorithm takes a mean value of a
quality characteristic, standard deviation, and random number, and outputs a density value at the
location on the bell curve associated with the random number supplied. The random number
represents the cumulative area under the standard normal distribution curve. For instance, a
random number of 0.025 would happen to give the quality characteristic at the lower 95%
confidence interval (of a two-tailed curve), while a random number of 0.5 would render the value
unchanged. This process is repeated for each independent level of variability present in the
system, giving a distribution of simulated measurements within a given LOT of material akin to
measurements typically obtained in the field.

68



ILLISIM ( Simulation Starts )

- q Random Number
Generation )
uts: 4
Mean Attribute Value > Intermediate Quality
Longitudinal Std. Dev. Characteristic Generation-1
4 Nuclear Gauge
Transverse O ffset > Intermediate Quality Correlation
Std. Dev. Characteristic Generation-2 Prameters
|
Repeat N times 4 <

Final Quality Characteristic
Generation

Device Std. Dev.

y

Random Number
Generation

Final Simulated
Measurements

A

Statistics Calculation:
Mean, Std. Dev.

Figure Al.1a: ILLISIM program flowchart, part 1 of 2. Letters ‘A’ and ‘B’ at the bottom of the chart indicate connecting points
for the ensuing figure.
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Figure A1.1b: ILLISIM program flowchart, part 2 of 2.
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ILLISIM uses the simulated measurements to compute a mean, standard deviation,
percent within limits, and pay factor for each LOT of material considered. For simulation
modeling of processes with high variability, it is important to run a large number of simulations
to adequately describe the characteristics of the system. A minimum of 1000 LOTS were
typically simulated for each unique group of input parameters considered. ILLISIM keeps track
of a large number of runs, so that a statistical distribution of correct pay versus actual pay for
individual LOTS and complete JOBS can be plotted.

The sampling schemes considered in this study for as-constructed pavement density are
summarized in Figure A1.2, which can be described as follows:

¢ Dual-Stratified Random Sampling Method — A length of pavement, or LOT, can be
divided into equal SUBLOTS, which can be further subdivided by the number of transverse
measurements desired per SUBLOT, as shown in Figure A1.2. Sampling locations are based
upon a conventional stratified random layout in the longitudinal direction. In the transverse
direction, samples are to be taken at the 2-, 4-, 6-, 8-, and 10-ft offsets, in random order.
Means and standard deviations are then computed using all measurements (N=15). Similar
groupings can be developed for other values of N. For instance, in a later section, a
comparison is made between N=9 and N=15 measurements, where the N=9 LOT consists of
three SUBLOTS with 3 measurements taken across the paving lane.

e Stratified-Average Sampling Method — This method utilizes an identical sampling layout
as the dual-stratified method. However, the mean and standard deviation are computed in a
different manner, as outlined in Figure Al.2. In summary, an average density is first
obtained for each of the three SUBLOTS. Then, a LOT average and standard deviation are
computed using the three SUBLOT averages.

Each of the two sampling methods has distinct advantages and disadvantages. The dual-
stratified method gives larger standard deviations, which reflect the combined standard deviation
caused by variability in both the longitudinal and transverse directions. The stratified-average
method has a smaller standard deviation, since the effect of transverse standard deviation is
essentially minimized by first averaging density values in each SUBLOT. The motivation for
investigating this method was to stabilize PWL-predictions on a per-LOT basis in an attempt to
minimize the possibility of frequent disputes, particularly when marginal quality levels arise.

Inputs for ILLISIM

The user supplies the following inputs to ILLISIM:

(1) Mean value of as-produced or as-constructed quality characteristic (e.g. density, asphalt
content, etc.) to be considered, or, more commonly, a range of such mean values.

(2) Standard deviation(s) of the quality characteristic(s) associated with production and
construction
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(3) Standard deviation of the measurement device (For density measurement using a nuclear
gauge, variability depends on the proximity to the mean value at which the gauge is
correlated to cores, described in more detail in a later section.)

(4) Number of measurements

(5) Sampling arrangement (e.g., completely random, dual-stratified random, stratified-
averaging method, etc., described in more detail in a later section)

(6) Specification limits

(7) Pay factor equation

(8) Pay limits or "caps" (per lot and per job)

Output from ILLISIM

Figure A1.3 shows typical output from ILLISIM, and the progression of analyses that
were conducted to assess relative risks for the producer and agency. First, simulated density
measurements were used to obtain averages and standard deviations according to Figure Al.2.
Next, PWL values and pay factors were determined (Figure Al.3 (a)). A separate program
called "Baseline" was developed, which determines the "correct pay" for the input values given,
based upon a very large number of simulations (uses 40,000 randomly generated density values).
The definition of correct pay is somewhat arbitrary, so a definition of the approach used herein is
appropriate. Correct pay was based upon the pay factor that would be determined over the long
run under acceptable levels of production and measurement device variability. Pay factor
differences per LOT and per JOB are computed using ILLISIM, which are then compared to the
correct pay value (Figures A1.3 (a) and (b)). Pay factor differences arise since a discrete number
of measurements will not typically lead to an exact measure of mean and standard deviation for
any given LOT.

Figure A1.3 (c) illustrates a typical plot used to assess payment differences, or payment
errors that can be expected for a given set of inputs. These results are generally shown across a
range of mean density of construction levels, to illustrate the increased risk of payment error for
LOT averages that happen to be near the specification limits (e.g., when marginal quality levels
arise). Maximum and minimum payment errors (risks) per LOT (based upon 1000 LOTS) and
per JOB (100 JOBS) are given. Also plotted are the 95% confidence intervals for pay
differences relative to mean pay, which allow the analyst to identify typical risk envelopes,
independent of possible extreme values for maximum or minimum pay difference. Finally, by
defining the 95% confidence intervals on payment error as a "risk index," risk levels can be
conveniently compared between different sampling methods and number of measurements, for
example, as illustrated in Figure A1.3 (d).
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Figures A1.4-A1.8 summarize other outputs from the ILLISIM runs. Some general
observations are as follows:

e As the number of measurements per LOT is increased, risk for both parties decrease.

e The risk of over- or under-payment is much lower when viewed on a per-JOB basis rather
than a per-LOT basis (e.g., Figure Al1.4 (a) versus (b)). It is important to be able to view
these risks separately, since disputes can arise if the contractor risk on the per-LOT basis is
too high even if the per-JOB risks are low. In general, risks tend to diminish due to the
statistical tendency to arrive at the correct payment estimate as more LOTS are assessed.

e The risk level for both parties is lowest at the middle of the specification range, which, in this
case, is 94% Gmm. This is because unless the standard deviation is exceptionally high, typical
errors in estimating the mean and standard deviation in this case are not enough to cause the
predicted normal distribution to shift outside the specification limits . Hence, 100 PWL is
estimated almost invariably, thus eliminating risks for payment errors.

e Conversely, risks for both parties are greatest when the mean density of construction is near
specification limits. This might indicate a benefit in obtaining more measurements when
marginal quality is detected.

e The stratified-average sampling method (Figure A1.5) performs very well (low risks for both
parties), between specification limits, but poorly in the vicinity of specification limits. This
is caused by the low standard deviation resulting from the averaging method used. A low
standard deviation gives a narrow bell curve, which renders the PWL prediction to be very
sensitive to small errors in estimating the average density (e.g., the area under the narrow bell
curve can easily shift from a very high PWL to a very low PWL with a small shift across the
specification limit). So, while the lower standard deviations associated with taking the
"average of the average" in the stratified-average method might intuitively be assumed to
lead to the reduction of errors in PWL estimation, this is not always the case.

e The dual-stratified sampling method (Figure A1.4) does not perform as well as the stratified-
average method between specification limits; however, the method results in lower risks
around the specification limits.
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Figures A1.6 and A1.7 show risk analysis plotted versus mean density. Due to the statistical
nature and randomization of the Monte Carlo simulation, the results are assumed to be
symmetric around the center of the specification range while any differences simulated on a
per-lot basis are insignificant and will be averaged out in the per-job analysis from which pay
is determined. Due to this symmetry and the fact that construction generally targets the
lower end of the specification range, these figures were plotted over the lower end of the
specification range with greater resolution near the lower specification limit (91%) to show
trends of risk as they approach the allowable specification limits.

Figure A1.6 is a convenient way to compare the two sampling methods considered. The risk
index bound is a statistically described bound on potential payment error. In the long run,
95% of payment errors will fall within the risk index bound.

Figure A1.7 compares nuclear gauge risks to risks associated with basing payment on density
measured from pavement cores, for identical sampling methods. Although core standard
deviations were modeled to be significantly lower than the nuclear gauge, the relative risks
were found to be surprisingly similar.

An additional consideration in comparing the nuclear gauge versus cores for acceptance is
test bias. The aforementioned conclusion assumes that a correlation is established between
density measured with the nuclear gauge and density measured on pavement cores, for which
an estimate of device variability can be obtained. After correlation, the bias is assumed to be
minimal. However, in practice, the accuracy of the correlation can change as a result of
changes in the materials, lift thickness, properties of underlying pavement layers, and
inaccuracies caused by changes in operational procedures and device operating
characteristics. Periodic recalibration will obviously reduce the potential for inaccuracies
due to bias; however, each recalibration requires significant coring and laboratory testing.
More work is needed to assess the implications of bias on the practicality and reliability of
the nuclear gauge for density acceptance.

Bias also tends to increase or decrease the payment risks in addition to that because of other
variability discussed before. To assess the risk introduced because of bias alone another
simulation program, BiasSim, was developed which is discussed in later section of this
report.

Figure A1.8 illustrates the use of ILLISIM to determine possible operating ranges where a
given level of payment can be obtained, under various levels of process and device standard
deviation. As process standard deviation or device standard deviation increases, the mean
density must be closer to the middle of the specification range to achieve 100 percent pay,
and even closer to the middle of the specification range to achieve full bonus, or 102 percent
pay, as illustrated in this example. Thus, if a contractor can decrease production variability
and/or if the acceptance tests are run with more precision, full pay can be realized over a
wider range of the mean density of construction.
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Level and Combined Variability
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Figure A1.9: Correlation between Nuclear Gauge and Cores Showing Divergent Confidence
Intervals
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APPENDIX A2

PaySim
The second simulation software PaySim was developed in order to:

(a) Incorporate a new simulation model
(b) Produce a more versatile simulation
(c) Reduce simulation time

The New Simulation Model

Inputs:
p — Production mean

- Production variance

- Device variance

n - Number of measurements taken
(pI , pu) - Lower and upper spec limits

Given the measurements X; Xp, .... , X, we can calculate the average X and standard
deviations. The estimated percent within limits (PWL) is

PWL = d((pp, - x)/'s)- ((p, = x)/s)
Where ®(a ! jil /2 is the cumulative density

functlon of the standard normal distribution.

The expected PWL is equal to

[ H{of G2 | af (PR g, oy

Where 0 =0 +0,

#(x): Probability distribution function of N(0,1)
9., (y) : Probability distribution function of the chi-

square distribution with n-1 degrees of
freedom.
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This calculation requires evaluation of double integral, but can be done using a Monte
Carlo method. A quick approximation for the expected value is as follows.

Let
q, =(p,-p)o. a=(p-p)o
The expected PWL can be approximated by
E(PWL), = ®(q,)-®(q,)

A more accurate approximation (especially for larger o) can be obtained with a second
order adjustment. The second order approximation is

E(P\M—)z = (DZ(qu)_(DZ(qI )

where
@, (a)=d(a)+0.5(a—0.5a* (a)!l (]aj < ﬁ)/(n ~1)

The expected pay factor can be approximated given the expected PWL.

Payment Risk Distribution

The ideal PWL is
I:)\Nl—o = q)((pu - p)/O'p)—CD((pl - p)/O'p)

The risk is due to the difference between PWL and PWL, The following Monte Carlo
method can be used to give lower and upper limits of this risk

(1) Generate z; (i=1, 2, .., B) from N(0, 1)
(2) Generate y; (i= 1, 2, .., B) from y_
(3) For each i compute

2 :(D[(pu - D)Jﬁ—zia]_q{(p. - pNﬁ—ziaJ

o4Y

oY

and
a, = min(55 +50a,,¢)

(4) Use azas a random sample from the risk distribution
and calculate target as follows
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Target = min(55 + 50 PWL,,¢c

Then average risk can be obtained by
Average risk = mean(a,) — target

Although this method also uses random numbers, it is not the same as ILLISIM. It uses the same
set of random numbers when production or device variances are varied. The set of random
numbers used will vary only with n. B= 5000 to 10000 give pretty accurate estimates of the
average risk and its lower and upper confidence limits.

This model has been incorporated in the simulation named as PaySim. The original
simulation engine was written in C and converted into a standalone executable program. This
executable program requires an input file to get all the input parameter values. To make it more
user-friendly Microsoft Excel was used as interface. The code for the interface was written in
Visual Basic. This interface allows the user to enter input values easily and makes an input file.
Then it runs the main simulation engine with the input file thus generated. The simulation
program puts the results (output) in an output file. The interface code takes that output file and
plots it in a convenient form for the user. Figures A2.1 (a) and (b) show a flow diagram
representing the overall functioning of the simulation.

Inputs for PaySim

(1) Device variability

(2) Production variability

(3) Number of samples

(4) Number of sublots

(5) Analysis range for the quality characteristic being analyzed
(6) Specification limits

(7) Pay cap option (cap before averaging or after averaging)
(8) Precision in simulation required (4 levels available)

(9) Confidence Interval required

Outputs from PaySim

The simulation is fully automated to complete all the tasks and produce risk plots for the
quality characteristic being analyzed and in the range as defined by the inputs. The list of inputs
also gives an idea of the versatility of the simulation because practically any combination of
input parameters can be chosen and analyzed. This is very helpful in doing sensitivity analysis.
The output is in the form of risk plots showing the risk to the agency (State) in pay factor
depending on the magnitudes of the input parameters. Figures A2.2 (a) to (k) show a sensitivity
analysis that was done using the PaySim simulation software.

Multiple simulation runs of PaySim were performed to get a risk index for pay factors for a fixed

value of combined standard deviation but with varying combination of device and production
standard deviations. Combined standard deviations were obtained from field and plant results
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from ERS demo projects in 2000 and 2001. The parameters analyzed were mix density, asphalt

content and percent voids.

Further details of values used in the simulation are given in Tables A2.1 and A2.2

Table A2.1: Spec limits and number of samples used in the simulation with PaySim

Parameter Target Lower Spec Upper Spec | Number of
Limit Limit Samples
Mix Density (%Gmm) 94.25 91.5 97 50
Asphalt Content (%) 5 4.67 5.33 15
Voids (%) 4 2.65 5.35 15

Table A2.2: Device and production standard deviations used with PaySim simulation

Parameter o device 1 o production 1 o device 2 o production2 o device 3 o production3
Mix Density 0.3 1.28 0.4 1.25 0.5 1.21
(% Gmm)

AC (%) 0.04 0.13 0.075 0.12 0.11 0.09
Voids (%) 0.15 0.67 0.20 0.66 0.25 0.64

Figure A2.2 shows the plots generated in the sensitivity analysis. As can be seen from the values
in table A2.2, combined variability is kept constant for any particular quality characteristic but
the device variability and measurement variability are being varied.
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PaySim

Inputs:
Mean Attribute

Spec Limits
Prod. Std. Dev.

Calculate Ideal Percent
Within Limits

( Simulation Starts >

Input all Parameters in MS
Excel (Interface)

I

Generate ASCII Input File
Using VB

l

Run Main Simulation
Engine (Executable)

Generate Chi-Square
Random Numbers

Use New Model to

|

Generate Normal Random
Numbers (Mean=0, Std = 1)

|

Generate Simulated
Attribute Values

Key: MS — Microsoft; VB — Visual Basic; Std — Standard Deviation

Figure A2.1a: Outline of working of PaySim
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Simulated Pay Factor
Calculation

Simulated PWL
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I
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Apply Pay Cap before or
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I

Determine Confidence
Confidence Interval

I

Mean Risk and Confidence

Interval Calculation
T

\

Sweep Through the Attribute Range

v
Output File from the
Simulation Engine

v

P
Plot Mean Risk and
Confidence Interval in MS
Excel
-

Key: PWL — Percent Within Limits; MS — Microsoft

Figure A2.1b: PaySim Program Schematic
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Figure A2.2 (a)-(b): Risk plots obtained from PaySim for different parameter levels
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Figure A2.2 (j)-(k): Risk plots obtained from PaySim for different parameter levels
There are some important points that can be noticed from the plots presented here.

(1) The magnitude of risk appears to be proportional to the ratio of device standard deviation
to production standard deviation. For example, in risk plots for density (Figure A2.2)
when this ratio increases from 0.23 to 0.41 maximum risk doubles from 0.8% to 1.6%.
Similarly in the case of AC when the ratio goes up from 0.31 to 1.2 the risk increases
from 2.4% to 6.8%. In the case of density, the risk increases from 2.3% to 2.8% with an
increase in the ratio from 0.22% to 0.30%.

(2) The values of combined standard deviations used in the analysis are close to those
actually observed in the field. Based on this it can be said that density seems to have
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much lesser risk in pay factor, in general, than Voids. AC is shown to have the maximum
risk involved.

(3) It is also noticeable that number of samples used for determining the pay factor exhibits
an inverse relationship with the risks involved in payment. As the number of samples
becomes smaller, the confidence interval on risk widens. A clear contrast can be seen
between the plots for AC and voids with N= 15 and N=5.
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APPENDIX A3
BiasSim

During highway construction, variations in the overall quality are unavoidable.
Variability in as-constructed properties depend on production and measurement variability. In
addition to variability around the actual value, a shift in measured properties, or bias, may also
exist. The BiasSim program was developed to simulate the effects of measurements bias
introduced by the contractor or agency.

The main simulation engine relies on generating a normally distributed random number
sequence with mean and standard deviation as estimated from observations of actual field project
overall standard deviations in Illinois (ERS demonstration projects). In the first stage standard
deviation reflects only the production-realted variability. This represents the as-constructed
quality of the pavement before measurement variability is introduced.

Measurement error due to variability of the instrument and/or test procedure is also
expected to follow a normal distribution. Measurement error will be different for different
instruments and different agencies (depending on differences in lab, operator etc.) Assuming that
the mean of the error remains zero, a suitable estimate of standard deviation for measurement
error was then used to generate two normally distributed error value sequences in the quality
characteristic under consideration. These errors are then induced in the values generated earlier
with certain mean and production variability. The resulting two sequences therefore simulate
measurements taken by the contractor and that by the agency, assuming that there was no bias.
Since the primary goal is to study the effect of bias, pay factor determined with these data could
be considered as the reference pay factor for determining risk due to bias alone.

The final step in data generation then, is to introduce bias in the contractor and agency
measurement values. Bias values have been determined for some ERS demonstration projects.
These values can be used for the study here. In essence bias signifies the shift in the
measurement from the actual value. A later section will show how bias can be calculated from
actual field data from any project. The data with bias therefore simulate the actual measurements
that one would obtain in the field for the quality characteristic concerned. Pay factor determined
from these data is the pay factor that the agency will arrive at if useds actual project data.

Determining Bias Magnitude

Table A3.1 shows the example of calculation of bias in a job. Suppose that 10 split samples were
taken to determine the as-constructed density of a pavement in District 8. Next, the contractor
and agency run each of the split samples in their own lab and the results shown in Table A3.1 are
obtained. The difference between these two sets of readings is the estimate of the difference in
density measurement between the contractor and the agency for the same material. Here it is
assumed that density split samples are identical. This difference includes the measurement
variability, which is always present. But measurement variability, being random in nature and
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generally normally distributedn will have a mean close to zero. But if the mean of the differences
is not close to zero, an estimate of bias is obtained.

Table A3.1: Example bias calculation

. Mean of Diff.
Job Contractor Agency Difference (Bias)
92.6 91.8 0.8
93.7 93.8 -0.2
93.9 93.9 0.0
92.8 93.4 -0.6
e 93.9 93.9 0.0
District 8 39 942 03 0.11
92.8 91.8 1.0
95.5 95.1 0.3
94.2 94.5 -0.3
95.0 94.7 0.4

Without additional information, it is not possible to determine how much of the bias was
contributed by the contractor and how much was contributed by the agency. That
notwithstanding, BiasSim can be used to study the amount of risk that bias poses to the pay
factor calculation.
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Inputs: Inputs:
N N
Mean= 0 Mean =0

VNN

Contr. Meas. Std. Dev.

Contractor
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Contractor Parameter Calculate Reference A
gency Parameter Values
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=)
Key: Std. Dev.- Standard Deviation; Contr. — Contractor; Meas — Measurement;  Prod. — Production; N — No. of Samples

Figure A3.1a: BiasSim Program Flowchart (1 of 2)
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Figure A3.1b: BiasSim Program Flowchart (2 of 2)
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Inputs for BiasSim

The following parameters can be studied in BiasSim:

(1) Quality Characteristic to be analyzed

(2) Production variability

(3) Device variability for contractor (multiple inputs possible)
(4) Device variability for agency (multiple inputs possible)
(5) Sample size per job

(6) Number of cases to be analyzed (for batch processing)
(7) Range of quality characteristic values for analysis

(8) Specification limits

(9) Comparison tolerances

(10) Precision desired in simulation

(11) Confidence interval

PF Risk Plot
Cont. Bias =-0.42, Agency Bias = 0.42

15

10 -
2 5
K4
2
o 0 Mean
k5 --o-- LowCl
L D .
- --a-- HighCl
a

Voids (%)

Key: Cont. — Contractor; Low CI — Lower Limit of Confidence Interval; High CI — Upper Limit of Confidence
Interval

Figure A3.2: Typical risk plot obtained from BiasSim
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Output from BiasSim

BiasSim was developed to perform the risk analysis for different magnitudes and signs of
bias in the measurements taken by the contractor and the agency in different situations. The
outputs from the simulation, therefore, are plots showing risk in pay factor (%PF) for a given set
of parameters and in the range of analysis desired. In case of batch processing, the simulation
runs all the cases together and then generates the plots. The simulator also has a batch processing
mode wherein all the cases in the batch are executed before the generation of the various plots.
The output data and the plots are stored in a separate file designated by the user. Batch
processing allows for multiple sets of contractor and agency bias to be simulated. But the other
parameters remain fixed for any single run. Figure A3.2 shows a typical plot generated by
BiasSim. High CI and Low CI refer to the upper and lower limit of confidence interval,
respectively.

Sensitivity Analysis
A senstitivity analysis using BiasSim is now presented. Risk associated in the
determination of pay factor for voids in plant produced HMA is studied. Table A3.2 shows the

combination of bias values that were used in this sensitivity analysis.

Table A3.2: Bias values used in the sensitivity analysis

Contractor Agency Contractor | Agency

0.00 0.00

-0.42 0.00 0.00 -0.42
-0.21 0.00 0.00 -0.21
0.42 0.00 0.00 0.42
0.21 0.00 0.00 0.21
-0.21 +0.21 +0.21 -0.21
-0.42 +0.42 +0.42 -0.42

Figures A3.3-A3.6 present the results of the sensitivity analysis conducted using BiasSim. The
three lines show mean risk (solid line), while the dashed lines show the limits of the 90%
confidence intervals. Some important points that can be derived from these results are:

e Plot 1 (Figure A3.3) shows the risk when both contractor and agency bias are zero. This
is a verification case, showing that BiasSim returns a result of zero risk when bias is input
as zero.

e Plot 2 shows the risks when contractor bias is —0.42, i.e. when the contractor’s void
measurements are consistently 0.42% lower than the actual value, while the agency
measures the correct value. Risk due to bias varies as void level increases from 1% to
7%. The maximum mean risk is 10% for both the contractor and agency depending on the
void value. Since the difference between the mean agency voids and mean contractor
voids is well within the prescribed comparison tolerance, their values will usually pass
the comparison and therefore, the contractor’s voids will be used for pay calculation.

100



Since the contractor is measuring less than actual value, the burden of risk falls on the
contractor for lower void levels. For higher void levels, the risk shifts to the agency.

e When the contractor bias is zero but agency bias is —0.42 (reverse of the last case) (plot 3)
they will still compare well most of the times because the comparison tolerance is 1%. So,
contractor’s values will be used most of the time, which do not have any bias, and therefore
the risk is zero all through the range of voids analyzed.

e When the contractor has positive high bias (plot 5) the trend is reverse of that observed
for the high negative bias.

e In the case when the contractor has high negative bias and the agency has high positive
bias (plot 10) the probability of a successful QA comparison is smaller than the case
shown in plots 2 and 6. As a result, the probability of agency voids being used in the pay
calculation is higher, although the likelihood is still under 50%. Because in some cases
the contractor voids are used (which are less than the actual value) and sometimes agency
voids are used (which are higher than the actual voids), the overall mean risk is smaller.
However, the 90% confidence interval is much broader than that observed in plots 2 and
6. Plot 12 shows that confidence intervals narrow when the bias magnitudes are halved,
simimar to that observed in plots 4 and 8.

The source code for BiasSim, which is written in MatLab, is provided in Appendix B3.

101



1 (Contr. Bias = 0.00, Agency Bias = 0.00)
15

10 -

-5 |

-10 4

-15

Figure A3.3: BiasSim risk plot from sensitivity analysis
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Figure A3.4: BiasSim risk plot from sensitivity analysis
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APPENDIX B1

Source Code for ILLISIM

Dim lotavg(10) As Double
Dim lotsig(10) As Double
Dim lotpwl(10) As Double
Dim lotpay(10) As Double
Dim lotpaydiff(10) As Double
Dim lotval(15) As Double
Dim subavg(3) As Double
Dim Dev(5) As Single

Dim Devicestd(15) As Single

Function NormVal(Avg, sigmal, y)

NormVal = (1 / (sigmal * (2 * 3.1415926) ~ 0.5)) * (2.71828 ~ -(((y - Avg) * 2) / (2 * sigmal *
2)))

End Function
Sub IntroPage()

Sheets("Intro").Activate
Range("A1").Select

End Sub
Sub InputData()

Sheets("RunData").Activate
Range("A1").Select

End Sub
Sub RunSim()

Workbooks("ILLI-SIM2.x1s").Sheets("RunData").Activate
simresfilenum = Cells(17, 3)

Workbooks.Open Filename:="C:\ILLISIM\sim results template.xls"
ActiveWorkbook.SaveAs Filename:="C:\Sim Results\sim results" & simresfilenum & ".xIs"

Workbooks("ILLI-SIM2.x1s").Sheets("Intro"). Activate

Call NewBaseline
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Call Yderive

Workbooks("ILLI-SIM2.x1s").Sheets("RunData").Activate
Cells(17, 3) = Cells(17,3) + 1

Sheets("Intro").Activate

End Sub

Sub Yderive()

NumRuns = Worksheets("RunData").Range("C16")
For g =1 To NumRuns

Sheets("ILLISIM").Activate
Range("B22:HD35").Clear

Ifq=1 Then
Sheets("RunData").Select
Range(Cells(3, 4), Cells(14, 4)).Copy
Sheets("ILLISIM").Activate
Range("B1:B12").Select
Selection.PasteSpecial Paste:=x1Values
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat"
If Cells(3, 2) = 2 Then Cells(3, 2) = "avg"
Cells(13, 2) = Sheets("RunData").Range("C18")

Sheets("RunData").Activate
Range(Cells(20, 4), Cells(23, 4)).Select
Selection.Copy
Sheets("ILLISIM").Activate
Range("K9:K12").Select
Selection.PasteSpecial Paste:=x1Values
End If
If =6 Then
Sheets("RunData").Select
Range(Cells(3, 5), Cells(14, 5)).Copy
Sheets("ILLISIM").Activate
Range("B1:B12").Select
Selection.PasteSpecial Paste:=xIValues
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat"
If Cells(3, 2) =2 Then Cells(3, 2) = "avg"
Cells(13, 2) = Sheets("RunData").Range("C18")
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Sheets("RunData").Activate
Range(Cells(20, 5), Cells(23, 5)).Select
Selection.Copy
Sheets("ILLISIM").Activate
Range("K9:K12").Select
Selection.PasteSpecial Paste:=x1Values
End If
Ifq=11 Then
Sheets("RunData").Select
Range(Cells(3, 6), Cells(14, 6)).Copy
Sheets("ILLISIM").Activate
Range("B1:B12").Select
Selection.PasteSpecial Paste:=x1Values
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat"
If Cells(3, 2) = 2 Then Cells(3, 2) = "avg"
Cells(13, 2) = Sheets("RunData").Range("C18")

Sheets("RunData").Activate
Range(Cells(20, 6), Cells(23, 6)).Select
Selection.Copy
Sheets("ILLISIM").Activate
Range("K9:K12").Select
Selection.PasteSpecial Paste:=x1Values
End If
If =16 Then
Sheets("RunData").Select
Range(Cells(3, 7), Cells(14, 7)).Copy
Sheets("ILLISIM").Activate
Range("B1:B12").Select
Selection.PasteSpecial Paste:=xIValues
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat"
If Cells(3, 2) =2 Then Cells(3, 2) = "avg"
Cells(13, 2) = Sheets("RunData").Range("C18")

Sheets("RunData").Activate
Range(Cells(20, 7), Cells(23, 7)).Select
Selection.Copy
Sheets("ILLISIM").Activate
Range("K9:K12").Select
Selection.PasteSpecial Paste:=xIValues
End If

Cells(9, 8) =q

MeanValue = Worksheets("ILLISIM").Range("B1")
Processsig = Worksheets("ILLISIM").Range("B2")
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Method = Worksheets("ILLISIM").Range("B3")
Devsig = Worksheets("ILLISIM").Range("B4")
NumRead = Worksheets("ILLISIM").Range("B5")
NumSubs = Worksheets("ILLISIM").Range("B6")
NumLots = Worksheets("ILLISIM").Range("B7")
NumlJobs = Worksheets("ILLISIM").Range("B8")
USL = Worksheets("ILLISIM").Range("B9")

LSL = Worksheets("ILLISIM").Range("B10")
pfconst = Worksheets("ILLISIM").Range("B11")
pfslope = Worksheets("ILLISIM").Range("B12")
char = Worksheets("ILLISIM").Range("B13")

corravg = Worksheets("ILLISIM").Range("K9")
corrsig = Worksheets("ILLISIM").Range("K10")
corrpwl = Worksheets("ILLISIM").Range("K11")
corrlotpay = Worksheets("ILLISIM").Range("K12")
corrjobpay = Worksheets("ILLISIM").Range("K12")
If corrjobpay > 102 Then corrjobpay = 102

For h=1 To NumlJobs
Cells(10, 8)=h
For J=1 To NumLots

randgen
randgen2

Sum=0
Fori=1 To NumRead

'Calculates initial characteristic value from process deviation
Avg = MeanValue
sigma = Processsig
Yfin =100
Area=0
inc = 0.05

For Y1 = (Avg - 4 * sigma) To Yfin Step inc
Y2=Y1+inc
X1 =NormVal(Avg, sigma, Y1)

X2 =NormVal(Avg, sigma, Y2)
A=inc * (X1 +X2)/2
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Area = Area + A
If Area >= Cells(i + 3, 4) Then GoTo 10

Next Y1

10 y=(Y1+Y2)/2
lotval(i) =y

'Considering measurement device deviation
If Devsig = "Nuke" Then
Devicestd(i) = 0.006003 * (lotval(i)) * 2 - 1.116363 * (lotval(i)) + 52.616
Elself IsNumeric(Devsig) Then
Devicestd(i) = Devsig
Else: MsgBox "Cell B3 must read 'Nuke' or '#.##'.", vbOK Cancel, "Invalid Input"
End If

'Calculates "final" density measurement

Yfin =100
Area=0
inc = 0.05

For Y3 =(y - 4 * Devicestd(i)) To Yfin Step inc

Y4=Y3 +inc

X3 =NormVal(y, Devicestd(i), Y3)

X4 = NormVal(y, Devicestd(i), Y4)
A=inc*(X3+X4)/2

Area = Area + A

If Area >= Cells(i + 3, 5) Then GoTo 20

Next Y3
20YF=(Y3+Y4)/2

lotval(i) = YF

Sum = Sum + YF
Next i
'Caculates lot average and std based on "strat" or "avg" method
If Method = "strat" Then

lotavg(J) = Sum / NumRead

SumSquare =0

Forn=1 To NumRead
s = (lotval(n) - lotavg(J)) * 2
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SumSquare = SumSquare + s
Nextn
lotsig(J) = (SumSquare / (NumRead - 1)) * 0.5

Elself Method = "avg" Then
SumLot =0
For n =1 To NumSubs
SumSub =0
For NN =1 To CInt(NumRead / NumSubs)
Num=NN+5*(n-1)
SumSub = SumSub + lotval(Num)
Next NN
subavg(n) = SumSub / CInt(NumRead / NumSubs)
SumLot = SumLot + subavg(n)
Next n
lotavg(J) = SumLot / NumSubs
SumSquare =0
For p=1 To NumSubs
s = (subavg(p) - lotavg(J)) ~ 2
SumSquare = SumSquare + s
Next p
lotsig(J) = (SumSquare / (NumSubs - 1)) * 0.5

Else: MsgBox "Cell B3 must read 'strat' or 'avg'.", vbOKCancel, "Invalid Input"
End If
'Calculates PWL per Lot

Avg = lotavg(J)
sigma = lotsig(J)

If sigma < 0.05 Then sigma = 0.05
lotpwl(J) = PWL(Avg, sigma, NumRead, USL, LSL)
'Calculates Pay Factor and PF Difference

lotpay(J) = pfconst + pfslope * lotpwl(J)
lotpaydiff(J) = lotpay(J) - corrlotpay

Next J
lotpaysum = 0

maxoverpay = 0
maxunderpay = 0
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Cells(22, 10 * (h- 1) +2) =h

'Reports per-Lot Numbers
For K=1 To NumLots

Cells(23, 10 * (h - 1) + K+ 1) = lotavg(K)
Cells(24, 10 * (h - 1) + K + 1) = lotsig(K)
Cells(25, 10 * (h - 1) + K+ 1) = lotpwl(K)
Cells(26, 10 * (h - 1) + K + 1) = lotpay(K)
Cells(27, 10 * (h - 1) + K + 1) = lotpaydiff(K)

lotpaysum = lotpaysum + lotpay(K)

If lotpaydiff(K) > maxoverpay Then maxoverpay = lotpaydiff(K)
If lotpaydiff(K) < maxunderpay Then maxunderpay = lotpaydiff(K)

Next K

'Reports per-Job Numbers
jobpay = lotpaysum / NumLots

If jobpay <= 102 Then

jobpay = jobpay
Else: jobpay = 102
End If

jobpaydiff = jobpay - corrjobpay
Cells(30,h+1)=h

Cells(31, h + 1) = jobpay
Cells(32, h + 1) = corrjobpay
Cells(33, h + 1) = jobpaydiff
Cells(34, h + 1) = maxoverpay
Cells(35, h + 1) = maxunderpay
Next h

SaveResults

Next q

ReduceResults

End Sub
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Sub NewBaseline()
Sheets("Baseline").Visible = True
ForKK=1To4

Sheets("RunData").Select
Range(Cells(3, 3 + KK), Cells(14, 3 + KK)).Copy

Sheets("ILLISIM").Activate
Range("B1:B12").Select

Selection.PasteSpecial Paste:=x1Values
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat"
If Cells(3, 2) = 2 Then Cells(3, 2) = "avg"
Cells(13, 2) = Sheets("RunData").Range("C18")

baseline

Sheets("ILLISIM").Activate
Range("K9:K12").Select
Selection.Copy
Sheets("RunData").Activate
Cells(20, 3 + KK).Select
Selection.PasteSpecial Paste:=x1Values
Next KK

Sheets("ILLISIM").Activate
Sheets("Baseline").Visible = False
End Sub
Dim storebook As String
Function PWL(X, y, z, USL, LSL)
Qu=0#
Ql=0#

If z=3 Then
'3 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu>-1.16 Then
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If Qu<0 Then
Pdu=100-1 * (50 + 1.2444 * (Abs(Qu)) " 4 - 6.3854 * (Abs(Qu)) * 3 + 0.8538 *
(Abs(Qu)) 2 +38.302 * (Abs(Qu)))
Else:
If Qu<1.16 Then
Pdu=1*(50+ 1.2444 * (Qu) * 4 - 6.3854 * (Qu) ~ 3 + 0.8538 * (Qu) ~ 2 + 38.302 *
(Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If Q1> -1.16 Then
If QI <0 Then
Pdl=100-1 * (50 + 1.2444 * (Abs(Ql)) " 4 - 6.3854 * (Abs(QI)) ~ 3 +0.8538 *
(Abs(Ql)) ~ 2 + 38.302 * (Abs(Ql)))
Else:
If QI < 1.16 Then
Pdl=1* (50 + 1.2444 * (Ql) ~ 4 - 6.3854 * (QI) * 3 + 0.8538 * (QI) 2 + 38.302 *
QD)
Else: Pdl=0
End If
End If
Else: Pdl =100
End If

PWLtot = (100 - Pdu) + (100 - Pdl) - 100

End If

If z=4 Then
"4 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu>-1.5 Then
If Qu <0 Then
Pdu=100-1 * (50 - 33.333 * (Abs(Qu)))
Else:
If Qu< 1.5 Then
Pdu=1 *(50-33.333 * (Qu))
Else: Pdu=0
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End If
End If
Else: Pdu =100
End If

If QI > -1.5 Then
If Q1 <0 Then
Pdl=100-1 * (50 - 33.333 * (Abs(Ql)))
Else:
If QI < 1.5 Then
Pdl=1 * (50 - 33.333 * (Ql))
Else: PdI=0
End If
End If
Else: Pdl =100
End If

PWLtot = (100 - Pdu) + (100 - Pdl) - 100

End If

If z=5 Then
"5 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu>-1.8 Then
If Qu<0 Then
Pdu=100-1 * (50 + 3.3742 * (Abs(Qu)) " 3 - 2.4068 * (Abs(Qu)) " 2 - 34.691 *
(Abs(Qu)))
Else:
If Qu< 1.8 Then
Pdu=1*(50+3.3742 * (Qu) * 3 - 2.4068 * (Qu) " 2 - 34.691 * (Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If QI > -1.8 Then
If Q1 <0 Then
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Pdl=100-1 * (50 + 3.3742 * (Abs(QI)) * 3 - 2.4068 * (Abs(Ql)) * 2 - 34.691 *
(Abs(Ql)))
Else:
If QI < 1.8 Then
Pdl=1* (50 +3.3742 * (Ql) ~ 3 - 2.4068 * (QI) ~ 2 - 34.691 * (Ql))
Else: Pdl=0
End If
End If
Else: Pdl =100
End If

PWLtot = (100 - Pdu) + (100 - Pdl) - 100
End If

If z= 6 Then
' 6 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu>-2.03 Then
If Qu <0 Then
Pdu=100-1 * (50 + 2.9406 * (Abs(Qu)) * 3 - 0.0022 * (Abs(Qu)) "2 - 36.742 *
(Abs(Qu)))
Else:
If Qu<2.03 Then
Pdu=1* (50 +2.9406 * (Qu) * 3 - 0.0022 * (Qu) "~ 2 - 36.742 * (Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If Q1 > -2.03 Then
If Q1 <0 Then
Pdl=100-1 * (50 + 2.9406 * (Abs(Ql)) ~ 3 - 0.0022 * (Abs(Ql)) " 2 - 36.742 *
(Abs(Ql)))
Else:
If Q1 <2.03 Then
Pdl=1* (50 +2.9406 * (QI) ~ 3 - 0.0022 * (QI) ~ 2 - 36.742 * (Ql))
Else: Pdl=0
End If
End If
Else: Pdl =100
End If
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PWLtot = (100 - Pdu) + (100 - Pdl) - 100
End If

If z=7 Then
"7 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu>-2.23 Then
If Qu <0 Then
Pdu=100-1*(50-0.815 * (Abs(Qu)) " 4 + 5.4299 * (Abs(Qu)) * 3 - 1.475 *
(Abs(Qu)) ~ 2 - 37.051 * (Abs(Qu)))
Else:
If Qu<2.23 Then
Pdu=1*(50-0.815* (Qu) "4 +5.4299 * (Qu) * 3 - 1.475 * (Qu) ~ 2 - 37.051 *
(Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If Q1> -2.23 Then
If Q1 <0 Then
Pdl=100-1 *(50-0.815 * (Abs(Ql)) * 4 + 5.4299 * (Abs(QIl)) * 3 - 1.475 * (Abs(Ql))
A2 -37.051 * (Abs(Ql)))
Else:
If Q1 <2.23 Then
Pdl=1*(50-0.815* (Ql) ~ 4 + 5.4299 * (Ql) ~ 3 - 1.475 * (QI) ~ 2 - 37.051 * (Ql))
Else: PdI=0
End If
End If
Else: Pdl =100
End If

PWLtot = (100 - Pdu) + (100 - Pdl) - 100
End If
If z= 8 Then

' 8 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y
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If Qu> -2.39 Then
If Qu<0 Then
Pdu=100-1*(50-1.155* (Abs(Qu)) " 4 + 6.4174 * (Abs(Qu)) * 3 - 1.8227 *
(Abs(Qu)) 2 - 37.415 * (Abs(Qu)))
Else:
If Qu<2.39 Then
Pdu=1%*(50-1.155* (Qu) "4+ 6.4174 * (Qu) ~ 3-1.8227 * (Qu) "~ 2 -37.415 *
(Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If Q1 > -2.39 Then
If QI <0 Then
Pdl=100-1 * (50 - 1.155 * (Abs(Ql)) * 4 + 6.4174 * (Abs(Ql)) ~ 3 - 1.8227 * (Abs(Ql))
N2 -37.415 * (Abs(Ql)))
Else:
If Q1 <2.39 Then
Pdl=1*(50-1.155*(QI)"4+6.4174 * (Ql) ~ 3 - 1.8227 * (QI) 2 - 37.415 * (QI))
Else: Pdl=0
End If
End If
Else: Pdl =100
End If
PWLtot = (100 - Pdu) + (100 - Pdl) - 100
End If

If z=9 Then
"9 samples

Qu=(USL-X)/y
Ql=(X-LSL)/y

If Qu >-2.53 Then
If Qu <0 Then
Pdu=100-1*(50-1.2613 * (Abs(Qu)) " 4 + 6.6228 * (Abs(Qu)) * 3 - 1.5375 *
(Abs(Qu)) 2 - 37.832 * (Abs(Qu)))
Else:
If Qu<2.53 Then
Pdu=1%*(50-1.2613 * (Qu) "4 +6.6228 * (Qu) 3 -1.5375 * (Qu) ~2-37.832 *
(Qu))
Else: Pdu=10
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End If
End If
Else: Pdu =100
End If

If Q1 > -2.53 Then
If QI <0 Then
Pdl=100-1* (50 -1.2613 * (Abs(Ql)) " 4 + 6.6228 * (Abs(Ql)) ~ 3 - 1.5375 *
(Abs(Ql)) 2 - 37.832 * (Abs(Ql)))
Else:
If QI <2.53 Then
Pdl=1*(50-1.2613 * (Q)) "4 +6.6228 * (QI)~ 3 -1.5375 * (Q)~2-37.832 *
QD)
Else: Pdl=0
End If
End If
Else: Pdl =100
End If
PWLtot = (100 - Pdu) + (100 - Pdl) - 100

End If

If z>= 10 Then
' 10 samples
Qu=(USL-X)/y
Ql=(X-LSL)/y
If Qu > -2.65 Then
If Qu<0 Then
Pdu=100-1* (50 - 1.2579 * (Abs(Qu)) " 4 + 6.4455 * (Abs(Qu)) * 3 - 0.934 *
(Abs(Qu)) * 2 - 38.272 * (Abs(Qu)))
Else:
If Qu <2.65 Then
Pdu=1*(50-1.2579 * (Qu) * 4 + 6.4455 * (Qu) * 3-0.934 * (Qu) ~ 2 - 38.272 *
(Qu))
Else: Pdu=10
End If
End If
Else: Pdu =100
End If

If Q1 > -2.65 Then
If QI <0 Then
Pdl=100-1 * (50 - 1.2579 * (Abs(Ql)) " 4 + 6.4455 * (Abs(Ql)) ~ 3 - 0.934 *
(Abs(QI)) ~ 2 - 38.272 * (Abs(Ql)))
Else:
If QI <2.65 Then
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Pdl=1*(50-1.2579 * (Ql) "~ 4 + 6.4455 * (Q1)*3-0.934 * (Ql) ~ 2 - 38.272 *
QD)
Else: Pdl1=0
End If
End If
Else: Pdl =100
End If

PWLtot = (100 - Pdu) + (100 - Pdl) - 100
End If

'"Take care of very slight fitting error (<0.1 error)
If PWLtot <0 Then PWLtot =0
If PWLtot > 100 Then PWLtot = 100

PWL = PWLtot

End Function
Sub SaveResults()

SheetNum = Worksheets("ILLISIM").Range("H9")

storesheet = "Sheet" & SheetNum

simresfilenum = Worksheets("RunData").Range("C17").Value
storebook = "sim results" & simresfilenum & ".xIs"

Workbooks("ILLI-SIM2 .x1s").Worksheets("ILLISIM").Range("A1:B13").Copy

Workbooks(storebook). Worksheets(storesheet). Activate
Range("B3").Select
Selection.PasteSpecial Paste:=xIValues

Workbooks("ILLI-SIM2.x1s"). Worksheets("ILLISIM").Range("J9:K12").Copy

Workbooks(storebook). Worksheets(storesheet). Activate
Range("B15").Select
Selection.PasteSpecial Paste:=xIValues

Workbooks("ILLI-SIM2.x1s"). Worksheets("ILLISIM").Range("A29:U35").Copy

Workbooks(storebook).Sheets(storesheet).Range("B23"). Activate
Selection.PasteSpecial Paste:=x1Values

Workbooks("ILLI-SIM2 x1s"). Worksheets("ILLISIM"). Activate

Range("A21:GS27").Select
Selection.Copy
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Workbooks(storebook). Worksheets(storesheet). Activate
Range("D32").Select
Selection.PasteSpecial Paste:=x1Values

Workbooks("ILLI-SIM2.x1Is").Activate
Sheets("ILLISIM").Select
Range("A1").Select

End Sub

Sub ReduceResults()

simresfilenum = Workbooks("ILLI-SIM2.xIs").Worksheets("RunData").Range("C17").Value
reducebook = "sim results" & simresfilenum & ".xIs"

Workbooks(reducebook).Activate
ReduceDataPWL
End Sub

Sub ReduceDataPWL()

13 s sk sk sk sk s s s ke sk sk sk sk s ke sk skeosk skosk skokesk

'BY LOT and BY JOB

13 s sk sk sk sk s s s ke sk sk sk sk s ke sk skeosk skosk skokesk

ForJ=1To4
ForK=1To5

KK=(J-1)*5+K
MM = (K - 1) * 400

'Assign Fixed (master) and Variable sheet names

Shnmf'="Sheet" & (J-1) *5+2
Shnmv = "Sheet" & KK

Sheets(Shnmv).Activate

Rows("52:2100").Select
Selection.ClearContents

Cells(53, 10) ="Average LOT PWL-sheet"

Cells(54, 10).Activate
ActiveCell.FormulaR1C1 = "=AVERAGE(R[-18]C[-5]:R[-18]C[194])"
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Forn=1 To 20

Cells(40, 10 * (n - 1) + 5).Activate

ActiveCell.FormulaR1C1 = "=AVERAGE(R[-4]C[0]:R[-4]C[9])"
Next n

Cells(53, 20) = "Average JOB PWL-sheet"
Cells(54, 20).Activate
ActiveCell.FormulaR1C1 = "=AVERAGE(R[-14]C[-15]:R[-14]C[184])"

Next K
Sheets(Shnmf).Activate

Cells(52, 4) = "PER LOT Analysis"

Cells(53, 5) = "Over PWL"

Cells(53, 6) = "Under PWL"

Cells(54, 4) = "Max"

Cells(55, 4) = "StdDev"

Cells(53, 8) ="Overall Avg LOT PWL"

Cells(54, 8) = (Sheets("Sheet" & (J - 1) * 5+ 1).Cells(54, 10) +
Sheets("Sheet" & (J - 1) * 5 + 2).Cells(54, 10) +
Sheets("Sheet" & (J - 1) * 5 + 3).Cells(54, 10) + _
Sheets("Sheet" & (J - 1) * 5 + 4).Cells(54, 10) +
Sheets("Sheet" & (J - 1) * 5+ 5).Cells(54, 10))/ 5

Cells(52, 14) = "PER JOB Analysis"

Cells(53, 15) ="Over PWL"

Cells(53, 16) = "Under PWL"

Cells(54, 14) = "Max"

Cells(55, 14) = "StdDev"

Cells(53, 18) ="Overall Avg JOB PWL"

Cells(54, 18) = (Sheets("Sheet" & (J - 1) * 5 + 1).Cells(54, 20) + _
Sheets("Sheet" & (J - 1) * 5 + 2).Cells(54, 20) + _
Sheets("Sheet" & (J - 1) * 5 + 3).Cells(54, 20) + _
Sheets("Sheet" & (J - 1) * 5 + 4).Cells(54, 20) + _
Sheets("Sheet" & (J - 1) * 5+ 5).Cells(54, 20)) / 5

Next J
ForJ=1To4
ForK=1To5

KK=(J-1)*5+K
MM = (K - 1) * 400
NN = (K- 1) * 40
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'Assign Fixed (master) and Variable sheet names
Shnmf = "Sheet" & (J-1) *5+2
Shnmv = "Sheet" & KK

Sheets(Shnmv).Activate
ActiveWindow.LargeScroll Down:=1

Fori=1 To 200

If Sheets(Shnmv).Cells(36, 1 + 4) >= Sheets(Shnmf).Cells(54, 8)
Then Sheets(Shnmf).Cells(MM + 55 +1,5) =
Sheets(Shnmv).Cells(36, 1 + 4) - Sheets(Shnmf).Cells(54, 8)

If Sheets(Shnmv).Cells(36, i + 4) >= Sheets(Shnmf).Cells(54, 8) _
Then Sheets(Shnmf).Cells(MM + 55 +1+ 200, 5) =
(Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8)) * -1#
If Sheets(Shnmv).Cells(36, 1 + 4) < Sheets(Shnmf).Cells(54, 8)
Then Sheets(Shnmf).Cells(MM + 55 +1, 6) =
Sheets(Shnmv).Cells(36, 1 + 4) - Sheets(Shnmf).Cells(54, 8)

If Sheets(Shnmv).Cells(36, i + 4) < Sheets(Shnmf).Cells(54, 8)
Then Sheets(Shnmf).Cells(MM + 55 +1+ 200, 6) =
(Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8)) * -1#

Next i

Forii=1To 20
If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) >= Sheets(Shnmf).Cells(54, 18)
Then Sheets(Shnmf).Cells(NN + 55 + 11, 15) =
Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)
If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) >= Sheets(Shnmf).Cells(54, 18) _
Then Sheets(Shnmf).Cells(NN + 55 +1ii + 20, 15) =
(Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)) * -1#
If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) < Sheets(Shnmf).Cells(54, 18) _
Then Sheets(Shnmf).Cells(NN + 55 +1ii, 16) =
Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)
If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) < Sheets(Shnmf).Cells(54, 18)
Then Sheets(Shnmf).Cells(NN + 55 +1ii + 20, 16) =
(Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)) * -1#
Next ii

Next K
Sheets(Shnmf).Activate

Cells(55, 5).Activate
ActiveCell.FormulaR1C1 ="=STDEV(R[1]C:R[2000]C)"

Cells(55, 6).Activate
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ActiveCell.FormulaR1C1 = "=STDEV(R[1]C:R[2000]C)*-1."

Cells(54, 5).Activate
ActiveCell.FormulaR1C1 = "=Max(R[2]C:R[2001]C)"

Cells(54, 6).Activate
ActiveCell.FormulaR1C1 ="=Min(R[2]C:R[2001]C)"

Cells(55, 15).Activate
ActiveCell.FormulaR1C1 ="=STDEV(R[1]C:R[200]C)"

Cells(55, 16).Activate
ActiveCell.FormulaR1C1 ="=STDEV(R[1]C:R[200]C)*-1."

Cells(54, 15).Activate
ActiveCell.FormulaR1C1 = "=Max(R[2]C:R[201]C)"

Cells(54, 16).Activate
ActiveCell.FormulaR1C1 ="=Min(R[2]C:R[201]C)"

Next J

End Sub
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APPENDIX B2
Source Code for PaySim

(1) Source code for the MS Excel interface (code in Visual Basic)
Sub makeinp()

"makeinpl Macro
' Macro recorded 8/1/2001 by Anshu Manik

'

Sheets("Home").Select

precision = Range("ae8").Value

cap = Range("af8").Value

Name = Range("F4").Value

file = Name & "\input.csv"

Sheets("Input").Select

If precision = "Crude" Then prec = 0

If precision = "Low" Then prec = 1

If precision = "Medium" Then prec =2

If precision = "High" Then prec = 3

Range("A11").Value = prec

If cap = "Before" Then capop =0

If cap = "After" Then capop =1

Range("al2").Value = capop

Range("A1:A13").Select

Selection.Copy

Sheets("Home").Select

Range("A1").Select

Workbooks.Add

Selection.PasteSpecial Paste:=x1Values, Operation:=xINone, SkipBlanks:=
False, Transpose:=False

Application.CutCopyMode = False

ActiveWorkbook.SaveAs Filename:=file,
FileFormat:=xICSV, CreateBackup:=False

ActiveWorkbook.SaveAs Filename:=file,
FileFormat:=xICSV, CreateBackup:=False

ActiveWindow.Close

Range("A1").Select

exec = Name & "\paysim.exe"

retval = Shell(exec, vbNormalNoFocus)

End Sub
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Sub getout()
ci = Range("ag8").Value
Name = Range("F4").Value
outfile = Name & "\out.csv"
Workbooks.Open Filename:=outfile
Range("A1:D750").Select
Selection.Copy
Windows("PaySim.xls").Activate
Sheets("Out.CSV").Select
Range("A2").Select
ActiveSheet.Paste
ActiveWindow.WindowState = xIMinimized
ActiveWindow.Close
ActiveWindow.WindowState = xIMaximized
Windows("PaySim.xlIs").Activate
Sheets("Home").Select
Range("A1").Select

ActiveSheet.Unprotect
Para = Range("f5").Value

Start =2
endplot = Start + Range("f14").Value
ActiveSheet.ChartObjects("Chart 2").Activate
ActiveChart.ChartArea.Select
ActiveChart.Axes(xICategory).AxisTitle.Select
Selection.Characters. Text = Para
Selection.AutoScaleFont = False

With Selection.Characters(Start:=1, Length:=5).Font

.Name = "Arial"
.FontStyle = "Bold"
Size =9.25
Strikethrough = False
Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ColorIndex = xIAutomatic
End With

ActiveChart.ChartArea.Select
ActiveChart.ChartTitle.Select

ci=ci* 100
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Selection.Characters.Text = "Risk Analysis" & Chr(10) & "(Average Risk with " & ci & "%
CIn"
Selection.AutoScaleFont = False
With Selection.Characters(Start:=1, Length:=40).Font
.Name = "Arial"
.FontStyle = "Bold"
Size =11.25
Strikethrough = False
Superscript = False
.Subscript = False
.OutlineFont = False
.Shadow = False
.Underline = xlUnderlineStyleNone
.ColorIndex = x]Automatic
End With

ActiveSheet.ChartObjects("Chart 2").Activate
ActiveChart.ChartArea.Select
ActiveChart.Axes(x1Category).Select
With ActiveChart. Axes(x1Category)

.MinimumScale = Range("f15").Value

.MaximumScale = Range("f16").Value

MinorUnitIsAuto = True

.MajorUnitlsAuto = True

.Crosses = x]Automatic

.ReversePlotOrder = False

.ScaleType = xILinear

.DisplayUnit = xINone
End With
ActiveChart. Axes(xIValue).Select
With ActiveChart.Axes(xIValue)

MinimumScale = -20

.MaximumScale = 20

MinorUnitIsAuto = True

.MajorUnitIsAuto = True

.Crosses = x]Automatic

.ReversePlotOrder = False

.ScaleType = xILinear

.DisplayUnit = xINone
End With
ActiveChart.ChartArea.Select

ActiveChart.SeriesCollection(1).XValues = "=0ut.CSV!R2C1:R" & endplot & "C1"
ActiveChart.SeriesCollection(1).Values = "=0ut.CSV!R2C2:R" & endplot & "C2"
ActiveChart.SeriesCollection(2).XValues = "=0ut.CSV!IR2C1:R" & endplot & "C1"
ActiveChart.SeriesCollection(2).Values = "=0ut.CSV!R2C3:R" & endplot & "C3"
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ActiveChart.SeriesCollection(3).XValues = "=0ut.CSV!R2C1:R" & endplot & "C1"
ActiveChart.SeriesCollection(3).Values = "=Out.CSV!R2C4:R" & endplot & "C4"
ActiveWindow.Visible = False

Windows("PaySim.xlIs").Activate

ActiveSheet.Protect DrawingObjects:=True, Contents:=True, Scenarios:=True
ActiveWindow.Visible = False

Windows("PaySim.xls").Activate

Sheets("Home").Select

End Sub
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Source code for paysim.exe (compiled in C)

#include <math.h>
#include "rngs.h"
#include "rvgs.h"
#include <io.h>
#include <string.h>
#include <FCNTL.H>
#include <stdio.h>
#include <stdlib.h>

double Uniform(double a, double b)
// Returns a uniformly distributed real number between a and b.
/I NOTE: usea<b

{

return (a + (b - a) * Random());

}

double Exponential(double m)
// Returns an exponentially distributed positive real number.
// NOTE: use m > 0.0

{
return (-m * log(1.0 - Random()));

}

double Normal(double m, double s)
// Returns a normal (Gaussian) distributed real number.
/I NOTE: use s > 0.0
/!
// ' Uses a very accurate approximation of the normal idf due to Odeh & Evans,
/1']. Applied Statistics, 1974, vol 23, pp 96-97.

{
const double p0 = 0.322232431088; const double q0 = 0.099348462606;

const double p1 = 1.0; const double q1 = 0.588581570495;
const double p2 = 0.342242088547; const double g2 =0.531103462366;
const double p3 = 0.204231210245e-1; const double q3 = 0.103537752850;
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const double p4 = 0.453642210148e-4; const double g4 = 0.385607006340e-2;
double u, t, p, q, z;

u = Random();
if (u<0.5)
t =sqrt(-2.0 * log(u));
else
t=sqrt(-2.0 * log(1.0 - u));
p =p0+t*(pl+t*(p2+t*(p3+t*pd)));
q =q0+t*(ql +t*(q2+t*(q3 +t* q4)));
if (u<0.5)
z=(p/q-t
else
z=t-(p/q);
return (m + s * z);

double Chisquare(long n)
// Returns a chi-square distributed positive real number.
/I NOTE: usen>0

{
long i;
double z, x = 0.0;

for 1=0;1<n;i++) {
z = Normal(0.0, 1.0);
X +=z%*z;

}

return (x);

}

void simulate()
{
float dstd=0; //read parameter values from file
from input.csv file
float pstd=0;
float std;
int nsamp=0,njob=0,npoint=0;
float Iplot=0,uplot=0;
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float ulimit=0,1limit=0,pcap=0;
int capopn=0;

int 1,j,k;

int precision = 0; //for determinig the precision
of calculation of area under normal curve

float p;

float cifact, cilow, ciup;

double areanorm(double x, int precsn);
void sort (double risk[ 10000], int numelt);
//read input file created by paysim.xls
FILE *infile, *outfile;

infile=fopen("input.csv","r");
if (infile==NULL) printf("did not read");
//else printf("read");
1 = fscanf(infile,"%f\n %f\n %i\n %i\n %i\n %f\n %f\n %fH\n %f\n %f\n %i\n %i\n
%f\n",&dstd,&pstd,&nsamp,&njob,&npoint,&lplot,&uplot,&llimit,&ulimit,&pcap,&precision,&
capopn, &cifact);

fclose(infile);
//input file closed
std=pow(pow(dstd,2)+pow(pstd,2),0.5);

printf("Device Std Dev = %f\nProcess Std Dev = %f\n",dstd,pstd);
printf("Number of Samples = %i\nNumber of Sublots = %i\n",nsamp,njob);
printf("Points to be Plotted = %i\nLower Limit of Plot =~ = %f\nUpper Limit of Plot

= %f\n",npoint,Iplot,uplot);
printf("Lower Specification Limit = %f\nUpper Specification Limit = %f\nPay Cap
= %f\n", llimit,ulimit,pcap);
printf("Precision =%i (0=Crude, 1=low, 2=Med, 3=High)\n",precision);
printf(""Pay Cap Option = %i1 (0=Before averaging over sublot, 1=After averaging
over sublot\n",capopn);
printf("Confidence Level = %f\n",cifact);

long x; //actual simulation starts here
const int num=6000;

double rn=0;

double chi[10000];

double norm[10000];

double avg;

double pwl0=0;

double target=0;
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double Chisquare(long n);

void PutSeed(long x);

void SelectStream(int index);
double Normal(double m, double s);

for (j=1;j<=num+1;j++) //initialise the arrays
{
chi[j]=0;
norm([j]=0;
}
SelectStream(0); /* select the default stream */
PutSeed(-1); /* and set the state to 1~ */

outfile=fopen("out.csv","w");
for (i=1;i<=num;i++)

{
chi[i]=Chisquare(nsamp-1); //generating chi sq and normal rnd nos
norm[i]=Normal(0,1);
}
cilow=0.5*(1-cifact); //for getting lower limit of confidence interval

ciup =cifact+0.5*(1-cifact); //for getting upper limit of confidence interval

float rangex =uplot-Iplot;

float increment=rangex/npoint;

double left, right;

double meanai, halfwidth,lowci=0, highci=0;
double pay[10000]=0;

if (capopn == 0) //pay cap put before averaging over sublot
{
for (i=0;i<=npoint;i++)
{

p=Iplot + increment * i;
pwlO=areanorm((ulimit-p)/pstd,precision)-areanorm((1limit-

p)/pstd,precision);
target=55+50*pwlO0; //ideal percent within limits pay
factor
if (target > pcap) target=pcap; //account for pay cap
/l printf("i=%f target= %f\n",p,target);

double meanrisk=0;
double risk[10000]=0;
double cumrisk=0;
double var=0;

for (j=1;j<=num;j++)
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{
left =((ulimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5));
right=((llimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5));
pay[j]=55 + 50 * (areanorm(left,precision)-
areanorm(right,precision));

if (pay[j] > pcap) pay[j]=pcap; /Ipay cap to be

risk[j] = pay[j] ;
cumrisk = cumrisk + risk[j];

applied at for each step here

h
sort(risk, num);
int ql=(num*cilow);
int g3=num*ciup;
meanrisk = cumrisk/num;

for (j=1;j<=num;j++) //find out 90% confidence intervals

{
}

halfwidth= cifact * pow((var / (num-1)),0.5);

lowci = meanrisk - halfwidth - target;

highci = meanrisk + halfwidth - target;
printf("%i1%% complete\n",(100*1/npoint));

var = var + pow((risk[j]-meanrisk),2);

fprintf(outfile,"%ft, %f, %f, %f\n", p, meanrisk - target, risk[q1]-target,
risk[q3]-target);
}
} //capopn = 0 ends here

if (capopn == 1) //pay cap put after averaging over sublot
{
for (i=0;i<=npoint;i++)
{
p=Iplot + increment * i;
pwlO=areanorm((ulimit-p)/pstd,precision)-areanorm((1limit-
p)/pstd,precision);
target=55+50*pwl0; //ideal percent within limits pay
factor
if (target > pcap) target=pcap; //account for pay cap
/l printf("i=%f target= %f\n",p,target);

double meanrisk=0;
double risk[10000]=0;
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double cumrisk=0;
double var=0;

int pos=1;

int q1,q3;

int reps=num/nsamp;

for (j=1;j<=num;j++)

{

left =((ulimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5));

right=((llimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5));

pay[j]=55 + 50 * (areanorm(left,precision)-
areanorm(right,precision));

risk[j] = pay[j] ;

int s=1;
float temp=0.0;
double avgpay[10000]=0;
double subpay=0;
for (j=1;j<=num;j++)
{
temp=0.0;
for (k=1;k<=nsamp;k++)
{
temp=temp+risk[j];
if (k < nsamp) j=j+1;
}
subpay=temp/nsamp;
if (subpay > pcap) subpay=pcap;
cumrisk = cumrisk + subpay;
avgpay[s]=subpay;
s=s+1;

meanrisk = cumrisk/reps;

sort(avgpay, reps); //sorting to get upper 95th percentile
and lower 5th percentile
ql=(reps*cilow);
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q3=reps*ciup;
int mid=reps*0.5;
printf("%i%% complete\n",(100*1/npoint));

fprintf(outfile,"%f, %f, %f, %f\n", p, meanrisk - target , avgpay[ql]-
target, avgpay[q3]-target);

}
} //capopn = 1 ends here

fclose(outfile);

double areanorm(double X, int precsn)

{ . .
inti, n;
if (x <-10) x=-10;
double incre, start;

double area=0.0, areal=0.0, arca2=0.0;
float min=-10.0;

incre=1.0;
start=min+incre/2; //dx=incre for integration of area
if (x >-3)
{
start=min+incre/2;
for (i=0;1 <=6;i++)
{
areal = areal + exp(-pow((start+i*incre),2)/2);
}
§

areal = (incre*areal);
start=-3;

if (precsn==0) incre=0.05;
if (precsn==1) incre=0.04; //dx=incre for
integration of area
if (precsn==2) incre=0.03;
if (precsn==3) incre=0.004;
n=(x-(start))/(2*incre);
n=n*2;
if (x <-3) n=0;
area=area+exp(-pow(start,2)/2) + 4*exp(-pow((start + incre),2)/2);
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for (i=2;i<=n-1;i=i+2)

{
area=area+2*exp(-pow((start+i*incre),2)/2) + 4*exp(-
pow((start+(i+1)*incre),2)/2);

}
/lprintf("x=%f # ",start+n*incre);
area=(areal+(incre/3)*(area + exp(-
pow((start+n*incre),2)/2)))/(pow((2*3.1415926),0.5));
return area;
}

double areanorm(double x, int precsn) //calculates area under
normal curve
//from -

infinity to x
{

//area is integrated over two ranges

//first from z=-10 to -3 and then from z=-3 to x

/lprintf("*** %1 ***" precsn);

nt i;

double area=0.0, areal=0.0, arca2=0.0;

float min=-10.0;

float incre;

incre=1.0;

float start=min+incre/2; //dx=incre for integration of
area

if (x <-10) x=-10;

if (x >-3)

{

start=min-+incre/2;
for (i=0;1 <=6;1++)

{
b

areal = areal + exp(-pow((start+i*incre),2)/2);

}

areal = (incre*areal);

min=-3.0;
float width=(min-x); //consider -10 =-infinity
if (x <-3) width=0;
if (precsn==0) incre=0.05;
if (precsn==1) incre=0.02; //dx=incre for
integration of area
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if (precsn==2) incre=0.01;
if (precsn==3) incre=0.005;
/1 printf("incre = %i",precsn);
start=min+incre/2;
int nsteps=abs(width*(1/incre))-1;
for (i=0;i<=nsteps;i++)

{
b

area2 = area2 + exp(-pow((start+i*incre),2)/2);

area2=(incre*area2);

area = (areal + area2)/(pow((2*3.1415926),0.5));
//if (x <=-7) area= area;

//else area=0.0;

/lprintf("areal = %f\narea2 = %f\n",areal ,area2);
/larea=1;

return area,

}
void sort (double unsorted[10000], int numelt)
{
int i,j;
double temp;
for (i=1; i<=numelt; i++)
{
for (j=1; j<=(numelt-i); j++)
{
if (unsorted[j] > unsorted[j+1])
{
temp=unsorted[j+1];
unsorted[j+1]=unsorted[j];
unsorted[j]=temp;
}
}
}
}

Code for random number generation (used in the simulation)

#include <stdio.h>
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#include <time.h>
#include "rngs.h"

#define MODULUS 2147483647
#define MULTIPLIER 48271
#define CHECK 399268537
#define STREAMS 256

#define A256 22925

#define DEFAULT 123456789

static long seed[STREAMS] = {DEFAULT};
static int stream =0;
static int initialized = 0;

double Random(void)
// Random returns a pseudo-random real number uniformly distributed
// between 0.0 and 1.0.

{
const long Q = MODULUS / MULTIPLIER;

const long R =MODULUS % MULTIPLIER;
long t;

t = MULTIPLIER * (seed[stream] % Q) - R * (seed[stream] / Q);
if (t>0)
seed[stream] = t;
else
seed[stream] =t + MODULUS;
return ((double) seed[stream] / MODULUS);

void PlantSeeds(long x)
// Use this function to set the state of all the random number generator
// streams by "planting" a sequence of states (seeds), one per stream,
// with all states dictated by the state of the default stream.
/I The sequence of planted states is separated one from the next by
// 8,367,782 calls to Random().

{
const long Q = MODULUS / A256;

const long R = MODULUS % A256;
int j;
int s;
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initialized = 1;

S = stream,; // remember the current stream
SelectStream(0); // change to stream 0
PutSeed(x); // set seed[0]

stream = s; // reset the current stream

for j =1; ] <STREAMS; j++) {
x =A256 * (seed[j - 1] % Q) - R * (seed[j - 1]/ Q);
if (x > 0)

seed[j] = x;
else
seed[j] =x + MODULUS;
h
}
void PutSeed(long x)

// Use this function to set the state of the current random number
// generator stream according to the following conventions:

/I if x> 0 then x is the state (unless too large)

/I 1f x <0 then the state is obtained from the system clock

/I if x = 0 then the state is to be supplied interactively

{
char ok = 0;

if (x> 0)
x =x % MODULUS; /* correct if X is too large */
if (x <0)
x = ((unsigned long) time((time t *) NULL)) % MODULUS;
if (x==0)
while (1ok) {
printf("\nEnter a positive integer seed (9 digits or less) >>");
scanf("%lId", &x);
ok = (0 <x) && (x < MODULUS);
if (lok)
printf("\nInput out of range ... try again\n");
}

seed[stream] = x;

}

void GetSeed(long *x)
//' Use this function to get the state of the current random number
/I generator stream.

{
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*x = seed[stream];

}

void SelectStream(int index)
//'Use this function to set the current random number generator
// stream -- that stream from which the next random number will come.

{
stream = ((unsigned int) index) % STREAMS;

if ((initialized == 0) && (stream !=0)) /* protect against */
PlantSeeds(DEFAULT); /* un-initialized streams */

}
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APPENDIX B3

Source code for BiasSim (Matlab code)

%This is the main simulation engine for BiasSim software.

%It is used to simulate the risk due to bias in the

%measurements of a any quality characteristic in highway construction.
%It uses input file "input.txt" generated by AMSimBias.xls.

%All ouputs are put in the PF.xIs file generated by this software.

fid = fopen('input.txt', 'rt'); %Open Input file made by Excel (AMSimBias.xls)
[A count] = fscanf(fid, '%g %g',[2,inf]);  %Get all input data into A

A=A

fclose(fid);

%open ouput file and put in the parameter values used
fid = fopen('PF.csv', 'w'"); %This is to reset the file i.e. delete all previous entries

%assign all input values to appropriate variables

N=A®4,1); %Number of samples in each job
Col =1;
NRuns = A(13,1); %Number of jobs with similar statistics

NPoints = A(6,1);

ProdSigma = A(3,1); %Production variability

MeasureSigmaCont = A(1,1); %Measurement variability for contractor
MeasureSigmaAgency = A(2,1) ; %Measurement variability for agency
%MeasureSigmaThparty = 0.5; %Measurement variability for third party

SpecLimitl = A(11,1) ; %spec limit for qc/qa comparision for PF (N=1
comparision)

SpecLimit3 = A(12,1) ; %spec limit for qc/qa comparision for PF (N=3
comparision)

%BiasThparty = 0.1*ones(N, Col); %Bias in third party's density data from actual density

UpperSpec = A(10,1);
LowerSpec = A(9,1);

NBias = A(15,1);
bias = A(16:35,1:2);

CI=A(14,1);
fclose(fid); %close PF.csv; parameter values written so far

fid =fopen('PF.csv', 'a");
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fprintf(fid, 'Input Parameter Values used in the simulation:\n');

fprintf(fid, 'Production Variability = %8.4f\nContractor Measurement Variability = %8.4f\n’,
ProdSigma, MeasureSigmaCont);

fprintf(fid, 'Agency Measurement Variability = %8.4f\nN = 1 Spec Limit = %8.2f\nN = 3 Spec
Limit = %8.2f\n', MeasureSigmaAgency, SpecLimitl, SpecLimit3');

fprintf(fid, "Upper Spec = %8.2f\nLower Spec = %8.2f\n', UpperSpec, LowerSpec);

for z = 1:NBias %Iloop for batch processing
Mu=A(7,1); %to 100 %mean density, later to be put in For loop
Width = A(8,1); %range on the x-axis

Width = Width - Mu;

Biasl = bias(z,1); %choose bias from the batch
Bias2 = bias(z,2);

BiasCont = Biasl*ones(N, Col); %Bias in contractor's density data from actual density
BiasAgency = Bias2*ones(N, Col); %Bias in Agency's density data from actual density

fprintf(fid, 'Contractor Bias= %8.2f, , ,Agency Bias= %8.2f\n', Bias1, Bias2);
fprintf(fid, ' X-Value, Mean, LowCI, HighCI\n");
Mu = Mu - (Width/(NPoints-1));

%initializing the variables
MeanRisk = zeros(NPoints, 1);
LowCI = zeros(NPoints,1);
HighCI = zeros(NPoints,1);

for p = 1:NPoints %# points for sweep across the range of analysis
Mu = Mu + (Width/(NPoints-1));

PFUb = zeros(NRuns,1); Y%for storing pay factors during each run
PFB = zeros(NRuns,1);

%initializing the variables

NormalRandom = zeros(N, Col); %simulating density with prod variability
MeasureRandomCont = zeros(N, Col);

MeasureRandomAgency = zeros(N, Col);

DensityUnbiasedCont = zeros(N, Col);

DensityUnbiasedAgency = zeros(N, Col);

DensityCont = zeros(N, Col);
DensityAgency = zeros(N, Col);
DensityUnbiasedPF = zeros(N, Col);
DensityPF = zeros(N, Col);
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for j = 1:NRuns

%Generating simulated density data

%ithis is without data and without measurement variability

NormalRandom = normrnd(Mu, ProdSigma, N, Col); %two sets for introducing
two bias values

%introducing measurement variability
MeasureRandomCont = normrnd(0, MeasureSigmaCont, N, Col);
MeasureRandomAgency = normrnd(0, MeasureSigmaAgency, N, Col);

%Unbiased emasurements
DensityUnbiasedCont = NormalRandom + MeasureRandomCont;
DensityUnbiasedAgency = NormalRandom + MeasureRandomAgency;

%Biased measurements
DensityCont = DensityUnbiasedCont + BiasCont;
DensityAgency = DensityUnbiasedAgency + BiasAgency;

%Apply specs to the biased density data
%Applying to first biased data

OneCompl =0; %to count N=1 pass comparisions
ThreeComp1 = 0; %to count N=3 pass comparisions
ThreeFailCompl = 0; %to count N=3 fail comparisions
fori=1:5:N-4

%specs comparision for the first biased data

if abs(DensityCont(i) - DensityAgency(i)) <= SpecLimitl
DensityPF(i:i+4) = DensityCont(i:i+4);
OneCompl = OneCompl + 1;

elseif abs(mean(DensityCont(i+1:i+3)) - mean(DensityAgency(i+1:i+3))) <= SpecLimit3
DensityPF(i:i+4) = DensityCont(i:i+4);
ThreeCompl = ThreeCompl1 + 1;

else
DensityPF(i:i+4) = DensityAgency(i:i+4);
ThreeFailComp! = ThreeFailCompl + 1;

end

end %end of loop for spec comaprisions

fori=1:5:N-4
%specs comparision for the first unbiased data
if abs(DensityUnbiasedCont(i) - DensityUnbiasedAgency(i)) <= SpecLimit1
DensityUnbiasedPF(i:i+4) = DensityUnbiasedCont(i:i+4);
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elseif abs(mean(DensityUnbiasedCont(i+1:1+3)) -
mean(DensityUnbiasedAgency(i+1:1+3))) <= SpecLimit3
DensityUnbiasedPF(i:i+4) = DensityUnbiasedCont(i:i+4);

else
DensityUnbiasedPF(i:i+4) = DensityUnbiased Agency(i:i+4);

end

end %end of loop for spec comaprisions
%determine pay factor

%determine percent within limits for unbiased data

AvgUb = mean(DensityUnbiasedPF);

StdUb = std(DensityUnbiasedPF);

PWLUb = 100*(normcdf(UpperSpec, AvgUb, StdUb) - normcdf(LowerSpec, AvgUDb,
StdUb));

%determine PF
PFUb(j) =55 + 0.5*PWLUD;

%determine percent within limits for biased data

AvgB = mean(DensityPF);

StdB = std(DensityPF);

PWLB = 100*(normedf(UpperSpec, AvgB, StdB) - normcdf(LowerSpec, AvgB, StdB));

%determine PF
PFB(j) = 55 + 0.5*PWLB;

%fprintf(fid, '%8.1f %8.1f %8.1f\n', Mu, PF1, PF2);

end %end of 1 to NRuns loop; for one mean point in the sweep

%Calculate mean PF and CI for PF at mean value
Risk = PFB - PFUb; %positive risk mean contractor got more pay than actual
MeanRisk(p) = mean(Risk);

%determine confidence interval (5th percentile and 95th percentile)
SRisk = sort(Risk);

LowClI(p) = SRisk(round(0.5*(1-CI)*NRuns));

HighClI(p) = SRisk(round((CI*NRuns)); %90% CI being formed
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Run=z
Progress = 100*p/NPoints

%print the results into a file

fprintf(fid, '%8.1f, %8.1f, %8.1f, %8.1f\n', Mu, MeanRisk(p), LowCI(p), HighCI(p));
end %end of loop for the full sweep across range

fprintf(fid, "n');
end %end of loop for batch processing

fclose(fid);
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APPENDIX B4

Source code for SRA (Matlab code)

sra.m
function retval = sra()

cl ear;

fid2 pen('input.txt', 'rt'); % pen Input file nade by Exce

%nill need to be changed for AC and Density anal ysis

% for density pl. enter gqcc =1
% voi ds pl. enter qcc = 2
% AC pl. enter gqcc = 3
qgqcec = 2;
switch gcc
case 1
gc = '"Density (% Gm"';
Al | owvsi gma = 0. 50;
case 2
gc = "Air Voids (%';
Al owmVBi gma = 0. 23;
case 3
qc = "AC (%",
Al | owvsi gma = 0. 05;
end
%open output file
fid = fopen(' ExpDes2.csv', "w); %This is to reset the file
i.e. delete all previous entries
fclose(fid); %l ose the file and delete the

paraneter values witten so far

tic

[A Count] = fscanf(fid2, "% % % % % % % % % % % % % % % % %
%9 %9 Y9 Y9 %9 Y9 % %9 %@ % %9 % ,[30,inf]); %et all input data into A
A=A,

fcl ose(fid2);

%hekc the nunber of cases to be run fromthe input file
Count = 0;
for i=1:30
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if A(Li)==
Count = Count + 1;
Cases(Count) =i;
end
end

% setting up structure of real time plotting w ndow
% no. of cases = Count

mpf = 4; % no. of plots per figure
% nunber of figure wi ndows
nf = floor(Count/ mpf) + 1;

if Count <= 3
ncf = 1;
nrf = Count;
el se
ncf = 2;
nrf = 2;
end

%Start batch processing i.e. run each case

%nitialise summary result variables
Ri skFact orBNeg = zeros(30,1);
Ri skFact or BPos zeros(30,1);
Ri skFactorB zeros(30,1);
Sweet B zeros(30,1);
PeakBi ased zeros(30,1);
TroughBi ased zeros(30,1);

%unbi ased portion renoved

Ri skFact or UoNeg zeros(30,1);
Ri skFact or UbPos zeros(30,1);
Ri skFact or Ub zeros(30,1);
Sweet Ub zeros(30,1);
PeakUnBi ased zeros(30,1);
TroughUnBi ased zeros(30,1);

VBt H TR HHHH TR HH R
HHHBHHHHH B AR HH R R

% | oop for each case run starts

for w = 1: Count

% ++++++++++++++++++++++++++++ Change Comment for output file

T s o 0 L T I O o O 0 o O R

fprintf(fid, 'Alowable neasurenent variability = 0.23. Experinental Design
Runs\n');

Oor+++++++++++++++H++H
ot o o S o O O

%ssign all input values to appropriate variables

N = A(8, Cases(Ww)); YNunber of sanples in
each job

Col = 1,
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NRuns = A(2, Cases(w)); %\urber of jobs with
simlar statistics
NPoi nts = A(16, Cases(w));

Pr odSi gna = A(7, Cases(w)); %°r oduction variability
Measur eSi gnmaCont = A(4, Cases(w)); %veasurement variability
for contractor

Measur eSi gnaAgency = A(5, Cases(w)) ; %veasurenment variability
for agency

Measur eSi gmaThparty = A(6, Cases(w)) ; %veasurenent variability
for third party

SpecLimtl = A(14, Cases(w)) ; %pec limt for gc/ga
conparision for PF (N=1 conpari sion)

SpecLimt3 = A(15, Cases(w)) ; %pec limt for gc/ga

conparision for PF (N=3 conpari sion)

%Bias in third party's density data from actual density

Upper Spec = A(13, Cases(Ww));
Lower Spec = A(12, Cases(w));
if gcc == 3

Rej QU = Upper Spec + 0.17;
Rej Q. = Lower Spec - 0.17;

elseif gcc == 1
Rej QU = 98.5;
Rej Q. = 87;
el seif gcc == 2
Rej QU = 1.5;
Rej QL = 6.5;
el se
nmsgbox(' Pl ease Enter Valid Quality Characteristic Code!');
br eak
end
M dSpec (Upper Spec + Lower Spec)/ 2;

NBi as = Count;
Accept abl eRi sk = 5;

%esired Confidence Interva
cl = A(3, Cases(w));

fprintf(fid, 'lInput Paraneter Values used in the sinmulation:\n");
fprintf(fid, 'Production Variability = 98. 4f\nContractor Measurenent
Variability = 98.4f\n', ProdSigma, MeasureSi gnaCont);

fprintf(fid, 'Agency Measurenent Variability = 98.4f\nThird Party Measurenent
Variability = 98.4f\nN = 1 Spec Limt = 98.2f\nN = 3 Spec Limt = 98.2f\n",
Measur eSi gnaAgency, MeasureSi gmaThparty, SpecLinmitl, SpecLimt3');
fprintf(fid, 'Upper Spec = 98.2f\nLower Spec = 98.2f\n', Upper Spec,

Lower Spec) ;

fprintf(fid, 'Sanple Size = 98.0f\n", N
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LRange = A(18, Cases(Ww)); %rean density, later to be
put in For |oop

URange = A(19, Cases(Ww)); % ange on the x-axis
Wdth = URange - LRange;

Mu = LRange;

Biasl = A(9, Cases(w)); %hoose bias fromthe
bat ch

Bias2 = A(10, Cases(w));

Bi as3 = A(1ll, Cases(w));

Nmore = 3*N,

Bi asCont = Bi asl,; % ones(Nnore, Col); %Bias in contractor's
density data from actual density

Bi asAgency = Bias2; % ones(Nmore, Col); 9%Bi as in Agency's
density data from actual density

Bi asThparty = Bi as3; % ones(Nnmore, Col); 9%Bias in Third Party's

density data from actual density

fprintf(fid, 'Contractor Bias= %8.2f\nAgency Bias= %8.2f\nThird Party Bi as=
98.2f\n'", Biasl, Bias2, Bias3);

fprintf(fid, "Risk with Oiginal Data, , , , , , , , , , , , , , ,,, , Rsk
wi th Bias Renmoved\n');

fprintf(fid, 'Mi, MeanRi sk, LowCl(p), H ghCl(p), PFBm LowCl PF, Hi ghCl PF,
PFBLmM ') ;

fprintf(fid, 'PercentOneConp, PercentThreeConp, Percent ThreeFail Conp,');
fprintf(fid, 'MeanR sk d(p), LowCl A d(p), H ghCldd(p), PFBAO dm LowCl PFQA d,
H ghCl PFA d, PFBLA dm');

fprintf(fid, 'MeanRi skUb(p), LowCl Ub(p), Hi ghCl Ub(p), PFUbm LowCl PFUb,

H ghCl PFUb, " );

fprintf(fid, 'PercentOneConpUb, Percent ThreeConmplb,

Per cent Thr eeFai | CompUb, ') ;

fprintf(fid, 'MeanR skUbd d, LowCl Ubd d, H ghCl Ubd d, PFUbA dm LowCl PFUbQ d,
H ghCl PFUbA d\ n');

Incre = Wdth/(NPoints-1);

Poi nt Density = A(17, Cases(w));
Mu = Mu - Incre;

%Sweet Spot = zeros(NPoi nts2, 2);

Sweet Start 1= 0; Ystarting and endi ng points of
sweet spot inside the spec limts

Sweet Endl = 0;

Sweet Start 2= 0;

Sweet End2 = 0;

p = 0;

% nitializing values for real-time plotting
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x(1)

y1(1)
y2(1)
y3(1)

x1(1)

y11(1)
y12(1)
y13(1)
y1l4(1)

TRRTRRTINT
eeee

eeeee

x11(1)
y21(1)
y22(1)
y23(1)
%l ear rp;
% or p = 1: NPoints % points for sweep across the
range of analysis
while Mu < URange

eeee

p=p+1
%let erm ning increnent for mean quality charcteristic for plotting
if (p > 3)
Sl opeH ghCl = abs((Hi ghCl (p-1)-H ghCl (p-2))/(Sweet Spot (p-1, 1) -
Sweet Spot (p-2,1)));
Sl opeLowCl = abs((LowCl (p-1)-LowCl (p-2))/(Sweet Spot (p-1,1) -

Sweet Spot (p-2,1)));

%average the |last two slopes to get slope
% his is done to danmpen the effect of oscilations (in case of noisy
out put)
if (p > 4)
Sl opeH ghCl 2= abs((Hi ghCl (p-2)-H ghCl (p-3))/(Sweet Spot (p-2, 1) -
Sweet Spot (p-3,1)));

Sl opeLowCl 2 = abs((LowCl ( p-2)-LowCl (p-3))/(Sweet Spot (p-2,1)-
Sweet Spot (p-3,1)));
Sl opeHi ghCl = (Sl opeH ghCl + Sl opeHi ghCl 2)/2;
Sl opeLowCl = (Sl opeLowCl + Sl opeLowCl2 )/2;
end

% he slope is futher danpened because the scale on y axis is not sane
as that one the x-axis

Sl ope = ((UrRange - LRange)/ 40)*( max( Sl opeHi ghCl,
Sl opeLowCl )) ~2/ 80;

I ncr enent = I ncre/ (Poi nt Density*max(Sl ope, 0. 001));
I ncr enent = max (| ncre/ Poi ntDensity, Increnent);
I ncr enent = mn(lncre, Increnment);
el se
I ncrement = Incre;

end
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Mi = Mu + Increnent;

if (Mu > URange- 0. 055)
Mu = URange;

end

Mu

% %unbi ased portion renoved
PFUb = zeros(NRuns, 1);
each run
PFB = zeros(NRuns, 1);

% nitializing the variables
Tot Num = Nnor e* NRuns;

% Density = zeros(N, Col)
Densi t yCont = zeros(N, Col);
Densi t yAgency = zeros(N, Col);
DensityThparty = zeros(N, Col);
%unbi ased portion renoved
Densi t yUnbi asedPF = zeros(N, Col);
Densi t yPF = zeros(N, Col);

OneConpl = 0;
Cont Accept sDept = 0;
contractor accepting dept results

ThreeCompl = O;
Thr eeFai | Conpl = O0;

%unbi ased portion renoved
OneComplb = O;
for unbi ased data
CAccept sDUb = O;
contractor accepting dept
ThreeCompUb = O;
conpari sions for unbiased data
ThreeFai |l Ub = 0;
conpari sions for unbiased data

results for

Tot Num = Nnor e* NRuns;
RegNum =N *NRuns;
Buf Num = Tot Num - RegNum
DensityC =
Densi tyCont C =

Bi asCont ;

Densi t yAgencyC
+ Bi asAgency;

DensityThpartyC
Col) + BiasThparty;

cntC = 0; %counts no. of
cntA = 0; %counts no. of
cntT = 0O; %ounts no. of

%let er mi ne how many sublots w ||
for rqg = 1: ReqNum
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% o count
% o count

% o count
% o count

% o count
unbi ased dat a

DensityC + nornrnd(0, MeasureSi gnaAgency,

DensityC + nornrnd(0, MeasureSi gmaThparty,

rej ectabl e sublots for
rejectable sublots for Agency data

rej ectabl e sublots for Third Party data
need to be rejected

% or storing pay factors during

N=1 pass conpari si ons
N=1fail and

N=3 pass conpari si ons
N=3 fail conparisions

% o count N=1 pass conpari sions

N=1fail and
% o count N=3 pass

% o count N=3 fail

nor nr nd( Mu, ProdSi gma, Tot Num Col);
DensityC + nornrnd(0, MeasureSi gmaCont,

Tot Num Col) +
Tot Num Col)

Tot Num

contractor data



% epl ace contractor data with acceptable data
while DensityContC(rq) < Rej QL
cnt C = cnt C+1;

%varn if too many rejcted sublots are com ng up
if cntC > Buf Num %.5*N/ 5
stringl = sprintf(' Too many rejected sublots!!!"');
string2 = sprintf('One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak;
end

DensityCont C(rqg) = DensityCont C(RegNum+cnt C) ;
% epl aces the rejectabl e val ue
end

whil e DensityContC(rqgq) > Rej QU
cnt C = cnt C+1,
%varn if too many rejcted sublots are com ng up
if cntC > Buf Num %.5*N/ 5
stringl = sprintf(' Too many rejected sublots!!!");
string2 = sprintf('One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak;
end
DensityCont C(rq) = DensityCont C( ReqNumtcnt C);
% epl aces the rejectable val ue
end

% epl ace Agency data with acceptabl e data
whi | e DensityAgencyC(rqgq) < Rej QL
cnt A = cnt A+1;
%varn if too many rejcted sublots are com ng up
if cntA > Buf Num 9%.5*N/ 5
stringl = sprintf(' Too nmany rejected sublots!!!"');
string2 = sprintf('One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak
end
Densi t yAgencyC(rq) = DensityAgencyC(RegqNum+cnt A) ;
% epl aces the rejectabl e val ue

end
whi | e DensityAgencyC(rqgq) > Rej QU
cnt A = cnt A+1;

%varn if too many rejcted sublots are com ng up
if cntA > Buf Num %.5*N/ 5
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stringl = sprintf(' Too nmany rejected sublots!!!"');
string2 = sprintf('One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak;
end
Densi t yAgencyC(rq) = DensityAgencyC(RegNum+cnt A) ;
% epl aces the rejectabl e val ue
end

% eplace Third Party data with acceptabl e data
whil e DensityThpartyC(rq) < Rej QL
cntT = cnt T+1;
%varn if too many rejcted sublots are com ng up
if cntT > Buf Num %.5*N/ 5
stringl = sprintf(' Too many rejected sublots!!!"');
string2 = sprintf('One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak;
end
DensityThpartyC(rq) = DensityThpartyC(RegNum+cntT);
% epl aces the rejectabl e val ue

end

whi l e DensityThpartyC(rq) > Rej QU
cntT = cnt T+1;
%varn if too many rejcted sublots are com ng up
if cntT > Buf Num %.5*N/ 5
stringl = sprintf(' Too many rejected sublots!!!");
string2 = sprintf(' One possiblity is that analysis is
bei ng done outside realisitc range of paraneter values!');
%li sp(stringl);
%li sp(string2);
br eak;
end
DensityThpartyC(rq) = DensityThpartyC(ReqNumtcntT);
% epl aces the rejectabl e val ue
end
end %end of loop for replacing rejectable quality data
wi th acceptable quality val ues

for j = 1:NRuns
oBi ased neasurenents
iStart = (j-1)*N +1;

iEnd = j*N,
Densi t yCont = DensityContC(iStart:iEnd);
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Densi t yAgency
DensityThparty

Densi t yAgencyC(i Start:i End);
DensityThpartyC(i Start:i End);

flag = 0;

%Apply specs to the biased density data
for i = 1:5:N

rem= Ni;
if rem<=4
adv = rem
el se
adv = 4;
end

%specs conparision for the biased data
if abs(DensityCont(i) - DensityAgency(i)) <= SpecLimtl
Densi t yPF(i :i +adv) = DensityCont (i:i+adv);
OneConpl = OneConpl + 1;
el sei f abs(DensityAgency(i) - M dSpec) < abs(DensityCont(i) -
M dSpec)
Densi t yPF(i :i+adv) = DensityAgency(i:i+adv);
Cont Accept sDept = Cont AcceptsDept + 1;
elseif adv >= 2 & abs(nean(DensityCont(i:i+2)) -
nmean( DensityThparty(i:i+2))) <= SpecLimt3
Densi t yPF(i:i+adv) = DensityCont (i:i+adv);
ThreeConpl = ThreeConpl + 1;
el se
Densi tyPF(i:i+adv) = DensityThparty(i:i+adv);
Thr eeFai | Conpl = ThreeFail Compl + 1;
end

end %nd of |oop for spec conaprisions

%inmulating the situation when an attenpt is first nade to renove the
bi as and then apply
%onparision limts on themto calculate pay factors

Diff = (DensityCont -DensityAgency);

%unbi ased portion renoved
Bias = nean(Diff);
Unbi asedDi ff = Diff - Bias;

ThDi ff = (DensityCont -DensityThparty);
ThBi as = nean(ThDi ff);
Unbi asedThDi ff = ThDi ff - ThBi as;
for i = 1:5:N
%specs conparision for the data from which bias has been renoved
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i f abs(UnbiasedDiff(i)) <= SpecLimtl
Densi t yUnbi asedPF(i:i +adv) = DensityCont (i:i+adv);
OneCompUb = OneConplb + 1;

el sei f abs(DensityAgency(i) - M dSpec) < abs(DensityCont(i) -

M dSpec)

Densi t yUnbi asedPF(i:i +adv) = DensityAgency(i:i+adv);
CAccept sDUb = CAcceptsDUb + 1;

el seif adv >= 2 & abs(nean(Unbi asedThDi ff(i:i+2))) <= SpecLimt3
Densi t yUnbi asedPF(i :i +adv) = DensityCont (i:i+adv);
ThreeCompUb = ThreeComplb + 1;

el se
Densi t yUnbi asedPF(i:i+adv) = DensityThparty(i:i+adv);
ThreeFai |l Ub = ThreeFail Ub + 1;

end

end %end of | oop for spec comaprisions

%let ermi ne pay factor

%unbi ased portion renoved

Y%leterm ne percent within limts for unbiased data

AvgUb = nean(DensityUnbi asedPF);

St dub st d( Densi t yUnbi asedPF) ;

PW.Ub 100* ( nor ncdf an( Upper Spec, Avgub, StdUb) -
nor ncdf an( Lower Spec, AvgUb, StduUb));

%det erm ne PF
PFUb(j) = 53 + 0.5*PW.Ub;
PFUbA d(j) = 55 + 0.5*PW.Ub;
if PFUbA d(j) > 103

PFUbA d(j) = 103;
end

%let erm ne percent within linmts for biased data
AvgB = mean(DensityPF);
StdB = std(DensityPF);

PW.B(j) = 100*(norntdfan{Upper Spec, AvgB, StdB) -
nor ncdf am( Lower Spec, AvgB, StdB));

%det erm ne PF
PFB(j) = 53 + 0.5*PW.B(j);
PFBA d(j) = 55 + 0.5*PW.B(j);
if PFBAd(j) > 103
PFBA d(j) = 103;
end
Wprintf(fid, '98. 1f 98.1f 9B8. 1f\n', Mi, PFl, PF2);
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end %end of 1 to NRuns |oop; for
one mean point in the sweep

%let erm ne how many tines N= 1 passed and how many tines failed
Tot Conp = OneCompl + Cont Accept sDept + ThreeConpl + ThreeFail Conpl;
Per cent OneConmp = 100* OneConpl/ Tot Conp;

Per cent Cont Accept sDept = 100* Cont Accept sDept/ Tot Conp;

Per cent ThreeConp = 100* Thr eeConpl/ Tot Conp;

Per cent Thr eeFai | Conp = 100* Thr eeFai | Conpl/ Tot Conp;

%let ermi ne how many tines N= 1 passed and how many tines failed when rel.
bi as renoved

Per cent OneConmpUb = 100* OneConpUb/ Tot Conp;

Per cent CAccept sDUb = 100* CAccept sDUb/ Tot Conp;

Per cent ThreeConmpUb = 100* Thr eeConpUb/ Tot Conp;

Per cent Thr eeFai | ConpUb = 100* Thr eeFai | Ub/ Tot Conp;

%det erm ne means and Cl of PF

PFBm = nean( PFB) ;

SPFB = sort (PFB);

LowCl PF = SPFB(round(((1-Cl)/2)*NRuns));

H ghCl PF = SPFB(round(((1+Cl)/2)*NRuns)); % Cl being forned

% d PF case
%det erm ne nmeans and Cl of PF

PFBA dm = nmean( PFBA d) ;

SPFBA d = sort (PFBA d);

LowCl PFA d = SPFBA d(round(((1-Cl)/2)*NRuns));

H ghCl PFQ d = SPFBA d(round(((1+Cl)/2)*NRuns)); % Cl being

f or med

% deal pay factor (Base |ine)
%Base line is calculated for data nean + production variability
NBL = 40000;
NBLnmore = 3*NBL;
DensityBL = zeros(NBLnore, 1);
DensityBL = nornrnd(Mi, ProdSigna, NBLnmore, 1);
% generate random nunbers corresponding to all owabl e neasurenent variability
al |l ommvar = nornrnd(0, Allow\Vsi gma, NBLnore, 1);
DensityBL = DensityBL + al |l owwar;
% epl ace rejectable quality data with acceptabl e data
cnt = 0;
for rqg = 1: NBL
while DensityBL(rq) < RejQ | DensityBL(rq) > Rej QJ
cnt = cnt + 1;
if cnt > (NBLnore-NBL)
br eak;
el se
DensityBL(rq) = DensityBL(NBL + cnt);
end
end

end
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%let erm ne nmean and std of baseline PF

Densi tyBLm = nmean(DensityBL(1: NBL));

StdDensityBL = std(DensityBL(1: NBL));

PW.BL = 100*( nor ncdf am( Upper Spec, DensityBLm StdDensityBL) -
nor ncdf am( Lower Spec, DensityBLm StdDensityBL));

PFBLmM = 53 + 0. 5* PWWLBL;

PFBLA dm = 55 + 0. 5* PW.BL;

%pply cap (here pay for each paranmeter is capped. This is different from
earlier specs.)
i f PFBLA dm > 103
PFBLA dm = 103;
end

%Cal cul ate nmean PF and CI for PF at nean val ue

Ri skBi ased = PFB - PFBLm %positive risk nean
contractor got nore pay than actual

MeanRi sk(p) = nean(Ri skBi ased);

%let ermi ne confidence interval ((100-alpha)th percentile and alph th
percentil e)

SRi sk = sort (Ri skBi ased) ;
LowCl (p) = SRisk(round(((1-Cl)/2)*NRuns));
H ghCl (p) = SRi sk(round(((1+Cl)/2)*NRuns)); % Cl being forned

% d PF case

%Cal cul ate nmean PF and CI for PF at nean val ue

Ri skBiaseddd = PFBAO d - PFBLA dm %positive risk
nmean contractor got nore pay than actual

MeanRi skA d(p) = mean( R skBi asedd d);

%let ermi ne confidence interval ((100-alpha)th percentile and alph th
percentile)

SRi skA d = sort (Ri skBi asedd d);
LowCl A d(p) = SR skAd(round(((1-Cl)/2)*NRuns));
Hi ghCl A d(p) = SRiskd d(round(((1+Cl)/2)*NRuns)); % Cl being forned

Sweet Spot (p, 1) = My;

% Evl pts2(w, p, 1) = My;
% Evl pts2(w, p, 2: NRuns+1) = SRi sk;

%unbi ased portion renoved

%Cal cul ate mean PF and Cl for PF at nean value (rel. bias renoved)

Ri skUnbi ased = PFUb - PFBLmM %oositive risk neans
contractor got nore pay than actual

MeanRi skUb(p) = mean(Ri skUnbi ased) ;

%let ermi ne confidence interval ((100-alpha)th percentile and alph th
percentile) (rel. bias renoved)

SRi skUb = sort (Ri skUnbi ased) ;

LowCl Ub( p) SRi skUb(round(((1-Cl)/2)*NRuns));

Hi ghCl Ub( p) SRi skUb(round(((1+Cl)/2)*NRuns)); % Cl being forned
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% mean PF and LCL and UCL when rel bias renpved

PFUom = mean( PFUDb) ;

SPFUb = sort (PFUb);

LowCl PFUb = SPFUb(round(((1-Cl)/2)*NRuns));

H ghCl PFUb = SPFUb(round(((1+Cl)/2)*NRuns)); % Cl being formed on PF when
rel. bias renpved

Ri skUnbi asedd d = PFUbA d - PFBLA dm %positive risk
neans contractor got nmore pay than actual
MeanRi skUbd d = nean( Ri skUnbi asedd d);

%det erm ne confidence interval ((100-al pha)th percentile and alph th
percentile) (rel. bias renoved)

SRi skUbd d = sort (Ri skUnbi asedd d) ;

LowCl Ubd d SRi skUbA d(round(((1-Cl)/2)*NRuns));

H ghCl Ubd d SRi skUpd d(round(((1+Cl)/2)*NRuns)); % Cl being forned

% mean PF and LCL and UCL with old eq. when rel bias renpbved

PFUbA dm = mean( PFUbQ d) ;

SPFUbA d = sort (PFUbA d);

LowCl PFUbA d = SPFUbA d(round(((1-Cl)/2)*NRuns));

H ghCl PFUbA d = SPFUbA d(round(((1+Cl)/2)*NRuns)); % Cl being forned

%°r ogress indicator calcul ation

Run = w

Pr ogr ess = round(100* ( Mu- LRange)/ (URange- LRange) ) ;
Prog = sprintf (' %8.0f %%o Conpl eted', Progress);

di sp(Prog);

%rint the results into a file

fprintf(fid, '98. 2f, 9. 2f, 98.2f, 98.2f, 98.2f, 98.2f, 9B.2f, 98.2f, ', M,
MeanRi sk(p), LowCl (p), H ghCl (p), PFBm LowCl PF, H ghCl PF, PFBLM ;
fprintf(fid, '98. 2f, 98.2f, 9%B.2f, ', PercentOneConp, Percent ThreeConp,

Per cent Thr eeFai | Conp) ;

fprintf(fid, '98.2f, 98.2f, 98.2f, 9B.2f, 9B.2f, oB.2f, o8. 2f, ',

MeanRi sk d(p), LowCl A d(p), H ghClAd(p), PFBA dm LowCl PFO d, Hi ghCl PFQ d,
PFBLA dm) ;

fprintf(fid, '98.2f, 98.2f, 98.2f, 98.2f, oB.2f, 98.2f, ', MeanRi skUb(p),
LowCl Un(p), Hi ghCl Uo(p), PFUbm LowCl PFUb, Hi ghCl PFUb);
fprintf(fid, "98.2f, 9B.2f, 9B.2f, ', PercentOneConpUb, Percent ThreeConpUb,

Per cent Thr eeFai | ConpUb) ;
fprintf(fid, '98.2f, 98.2f, 9%8.2f, 98.2f, 98.2f, 98.2f\n ', MeanRi skUbQ d,
LowCl Ubd d, Hi ghCl Ubd d, PFUbA dm LowCl PFUbA d, Hi ghCl PFUbQ d);

%tore all the results printed in the file in a matrix as well

% esults correspondi ng to New PF Eq.

row(l, 1:8) = [Mi, MeanRi sk(p), LowCl (p), H ghCl(p), PFBm LowCl PF,
H ghCl PF, PFBLM ;
row(1l, 9:11) = [PercentOneConp, Percent ThreeConp, Percent ThreeFail Conp];

% esults corresponding to Od PF Eq.
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rowm(1, 12:18) = [MeanRi sk d(p), LowClA d(p), H ghC O d(p), PFBA dm
LowCl PFO d, Hi ghCl PFO d, PFBLA dnj;

% esults corresponding to New PF Eq. with rel. bias renoved

rowm 1, 19:24) = [ MeanRi skUo(p), LowCl Uo(p), H ghC Ub(p), PFUbm LowCl PFUb,
H ghCl PFUD] ;

rowm 1, 25:27) = [Percent OneCompUb, Percent Thr eeConpUb,

Per cent Thr eeFai | ConpUb] ;

% esults corresponding to Od PF Eq. when rel. bias renoved
row(1l, 28:33) = [MeanRi skUbd d, LowCl Ubd d, Hi ghCl Ubd d, PFUbQO dm
LowCl PFUbA d, Hi ghCl PFUbQ d] ;

rp(w, p, 1:33) = row,

%fg = floor((w 1)/ mpf) + 1;
% figure(fg);
% subpl ot num = w (f g-1)*mpf;

% if subplotnum==1
% clf;
% end

%

% subpl ot (nrf, ncf, subplotnum;

%if p==1

% cl a;

% end

%

% hol d on; grid on;

% x| abel (qc);

% ylabel ("Risk (%Bid Anmount)"');

%

% as = nunstr (A | owMVsSi gna, '%6. 2f");
% sp = nun®str(ProdSigm, '%.2f");
% sm = nun®str ( Measur eSi gnaCont, '9%6. 2f");
% ns = nunstr(N, '%.0f");

% sl 1= nunRstr(SpecLimtl, '9%.2f");
% sl 3= nunRstr(SpecLimt3, 'u%.2f");
%

%if BiasCont == 0

% bs = '"Low ';

% el se

% bs = 'Hi gh';

% end

%

%ttl =["'Sig-P=", sp, ' Sig-M', sm ' N=", ns, ' Bias=', bs];

%title(ttl);

% axis([2, 6, -30, 30]);
%

%h = plot(x, yl1, "k')
% h2 = plot(x, y2,
% h3 = plot(x, y3,
%
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% set (h, 'erasenode', 'none');

% set (h2, 'erasenode', 'none');
% set (h3, 'erasenode', 'none');
%

%

% dr awnow

% X =rp(l:p, 1);

% yl =rp(l:p, 2);

% y2 = rp(l:p, 3);

% y3 = rp(lip, 4);

% set(h, 'xdata', x, 'ydata', yl);
% set(h2, 'xdata', x, 'ydata', y2);
% set(h3, 'xdata', x, 'ydata', y3);
%

%

% %br aw nmean PF, confidence linits and base |ine pay
%fgl = fg + 100;

% figure(fgl);

% subpl ot num = w (fgl-101) * mpf;

% i f subpl otnum ==

% clf;

% end

%

% subpl ot (nrf, ncf, subpl otnum;

%if p ==

% cl a;

% end

% hol d on; grid on;

% x| abel (qc);

% yl abel (' Pay Factor (%');

%

% as = nunstr (A | owVsSi gma, ' 9%6. 2f');

% sp = nun®str(ProdSi gma, '9%.2f');

% sm = nun®str ( Measur eSi gmaCont, ' %6. 2f');

% ns = nunstr(N, '%.0f");

%

%ttl =["'Sig-P=", sp, ' Sig-M', sm ' N=', ns, ' Bias=', bs];

Wtitle(ttl);
% axis([2, 6, 60, 105]);

%

% hl1l = plot(x1, y11, 'k', 'linewidth', 2);
% h12 = plot(x1, yl2, 'r--');

% h13 = plot(x1, y13, 'r--');

% h14 = plot(x1, yl4, "k-*');

%

% set (h1ll, 'erasenode', 'none');
% set (h12, 'erasenode', 'none');
% set (h13, 'erasenode', 'none');
% set (h14, 'erasenode', 'none');
%

%

% dr awnow

% x1 =rp(l:p, 1);

% y1l1l = rp(l:p, 5);

% y1l2 = rp(l:p, 6);

% y13 = rp(l:p, 7);

% yl4 = rp(1l:p, 8);
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% set (hll, 'xdata',
% set (h12, 'xdata',
% set (h13, 'xdata',
% set (h14, 'xdata',
%

% | egend(' Mean PF',
%

% %raw nmean risk, LCL,
% fg2 = fg + 200;

% figure(fg2);

x1, 'ydata', yll);
x1, 'ydata', yl12);
x1l, 'ydata', yl13);
x1l, 'ydata', yl4);
"Low CL PF', '"Up CL PF', 'Base Line',

and UCL when rel

% subpl ot num = w (f g2-201) * mpf;

% i f subpl otnum ==
% clf;

% end

%

% subpl ot (nrf,
%if p ==

% cl a;

% end

%

% hold on; grid on;
% x| abel (qc);

ncf,

subpl ot nuny ;

%yl abel (' Ri sk (% Bid Amunt)');

%

% as = nunRstr (Al | omVSi gma, ' %6. 2f');

% sp = nunstr(ProdSi gma, '%.2f"');

% sm = nun®str ( Measur eSi gnaCont, ' 9%6.2f"');
% ns = nunstr(N, '%.0f");

% sl 1= nunstr(SpecLimtl, '9%.2f");

% sl 3= nunstr(SpecLimt3, '9%.2f");

%

% if BiasCont ==

% bs = 'Low ';

% el se

% bs = 'High';

% end

%

%ttl =["Sig-P=", sp, ' Sig-M', sm '
%title(ttl);

% axis([2, 6, -30, 30]);

%

% h21 = plot(x11, y21, 'k');

% h22 = plot(x11, y22, "b-x");

% h23 = plot(x11, y23, "b-x");

%

% set (h21, 'erasenode', 'none');

% set (h22, 'erasenode', 'none');

% set (h23, 'erasenpde', 'none');

%

%

% dr awnow

% x11 = rp(l:p, 1);

% y21 = rp(l:p, 19);

% y22 = rp(l:p, 20);

% y23 = rp(l:p, 21);

% set (h21, 'xdata', x11, 'ydata', y21);
% set (h22, 'xdata', x11, 'ydata', y22);
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% set (h23,

' xdat a',

x11,

"ydata', y23);

end

clear risk;

risk(:, ) =rp(w 1:p,1:4);

%isk = risk'
nrband(w) = nrb(risk,
rindices(1l:5, 1:3, w
pl ot num = nunstr (w,
%rat name = [' ExpDes', w,
%save matnanme rp;

LenB = p;
LenU = p;

%&nd of

% engt h( H ghCl);
% engt h( H ghCl Ub) ;

| oop for the full sweep across range

[ Lower Spec Upper Spec] ) ;

= merisk(ri sk,
"oRf');
".mat'];

[ Lower Spec Upper Spec]);

¥Sweet Spot = zeros(max(LenB, LenU), 3);

fprintf(fid, "\n");

fprintf(fid, 'Narrow Ri sk Band Wdth =, %. 2f\n', nrband(w));

fprintf(fid, ', Q Char , Low C, Hgh C\n");

fprintf(fid, '"Md Point, 98.2f, 98.2f, 98.2f\n', rindices(1,1,w,
rindices(1,2,w), rindices(l,3,w);

fprintf(fid, 'Lower Spec LImt, 98.2f, 98.2f, 98.2f\n", rindices(2,1,w),
rindices(2,2,w), rindices(2,3,w);

fprintf(fid, 'Upper Spec Limt, 98.2f, 98.2f, 98.2f\n\n', rindices(3,1,w,
rindices(3,2,w), rindices(3,3,w);

fprintf(fid, 'Maxinmm Negative Risk = 9%b.2f, for the quality characteristic
value =, 9%.2f\n', rindices(4, 2, w), rindices(4, 1, w));

fprintf(fid, 'Maxinum Positive Risk =, 9%.2f, for the quality characteristic
value =, 9%.2f\n\n\n', rindices(5, 2, w), rindices(5, 1, w);

PTi me = toc;
fprintf(fid,
end
processi ng

fprintf(fid, "\n\in\n");
fclose(fid);

nr band

rindi ces

%save ' ExpDes2. mat' rp;

Y%save ' Eval nPt sExpDes2. mat"

totaltime= toc

retval = 0

"Processing Time = 9. 2f\n\n\n",

PTi ne) ;

%end of | oop for batch

Evl pt s2;

riskPmeas.m
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%this code is used to read a csv output file generated by sra.mfor

% experinmental design runs. the gaps between successive runs had to be

% renoved for easier reading by matlab

% Thi s code cal cul ates vari ous neasures of goodness of the risk plots for
% determ ning the effect of various paraneters in risk

clear;

resol uti on = 100;
speclimts = [2.65, 5.35];
| oad ED6. csv;

out = ED6;

% dentify the sets of data for each case run
n = length(out);

count = 0; % o0. of cases in the output
for i = 1:n
if out(i, 1) ==

count = count + 1;
Ystarting point of each case
casei nd(count,1) =1i;

%endi ng point of each run
if count > 1
casei nd(count-1,2) =i-1;
end
end

end

%endi ng point of entire data set
casei nd(count,2) = n;

%setting resolution to be an even nunber
if (rem(resolution,2) == 1)

resolution = resolution - 1;
end

for i = 1:count
%sel ect data for each case
risk = out(caseind(i, 1):caseind(i, 2), 1:4);
npoints = caseind(i, 2) - caseind(i, 1) + 1

% interpolate to greater resolution

xx = linspace(risk(1,1), risk(npoints, 1), resolution+l);
irisk(l:resolution+l, 1) = xx';

irisk(1l:resolution+l, 3) spline(risk(:, 1), risk(:, 3), xx)';
irisk(1l:resolution+l, 4) spline(risk(:, 1), risk(:, 4), xx)';

% narrow ri sk band

nrband(i) = nrb(irisk, speclimts);

%risk at md point and spec limts and maxi mum and m nnmum ri sk
nrisk(1:5, 1:3, i) = merisk(irisk, speclinmts);

% figure(i)

% clf;
% hol d on;
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% axis([2 6 -30 30]);

% grid on;

% plot(irisk(:, 1), irisk(:,3), irisk(:,1), irisk(:,4));
% plot(risk(:,1), risk(:,2), 'r");

end

%ut the results in another output file in a summary form

fid = fopen(' ExpDeslndices6.txt', '"w);

fprintf(fid, "NRB MdR sk-LCL M dR sk-UCL LSLR sk-LCL LSLR sk-UCL LSLR sk-
LCL LSLRi sk-UCL LocMN MaxNegRi sk LocMP MaxPosRi sk\n');

for i = 1:count

fprintf(fid, '98.2f 9B. 2f 8. 2f ", nrband(i), misk(1l, 2, i),
nrisk(1, 3, i));

fprintf(fid, '98.2f 98. 2f 98. 2f 98. 2f ", onrisk(2, 2, i),
nrisk(2, 3, i), nrisk(3, 2, i), nrisk(3, 3, i));

fprintf(fid, '98.2f 9. 2f 98. 2f 98. 2f \n'", nrisk(4, 1, i),
nrisk(4, 2, i), nrisk(5, 1, i), nrisk(5, 2, i));
end
fclose(fid);
nr band
nrisk

ptrindex4.m

% cal cul ates riskindex at a single point of evaluation

%it takes a representative set of risk values and takes their nonent
% about the nmean and returns that val ue.

%his file is sane as ptrindex. mexcept that the exponent is

% proportional to the nmagnitude of the risk value rather than
%relative to its position within the band.

function retval = ptrindex3(risk)

nnmt 100;

%ort risk val ues
risk abs(risk);
risk sort(risk);

Y%sel ect nmmt representative values fromthe sorted list for taking nonent
n = length(risk); % unber of eval uations at a point
incre = n/nmt;

for i = 1:nmt

trim(nmt-i+1) = risk(n-floor((i-1)*incre));
end
range = 50;
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rind = zeros(1,2);
for i = 1:nmm

% irst pt risk index. weight changes exponentially
if range ==
expo = 1,
el se
expo(1) = 0.5 + trim(i)/range;
end
rind(l) =rind(1) + trin{i)”™expo;

%second pt risk index. weight changes linearly

factor = 1 + trim(i)/range;
rind(2) =rind(2) + trinm(i)*factor;

end

retval = (1/nnmt)*rind

nrb.m

% his code cal culates the narrow risk band in a risk plot

function bandwi dth = nrb(irisk, specw dth)
resol uti on = 100;

cl ear band;
band(:, 2)
band(:, 1)

irisk(:, 4) - irisk(:, 3);
irisk(:, 1);

% find out no. of evaluated points
[m n] = max(irisk(:,1))

md = floor(n/2)+1;
% nitialize the variables

startnrb = band(m d, 1);
endnrb = band(m d, 1);

split = md;
for i = md:-1:1
if band(i, 2) <=5
split =1i;
%startnrb = band(i, 1);
el se
br eak;
end
end
split
if split > 2
X = band(split-2:split+2, 1);
y = band(split-2:split+2, 2);
el se

switch split
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end

yy(:
yy(:

for

end

spl
for

end

if s

el se

end

yy(:
yy(:

for

end

case 1

X = band(split:split+4, 1);
y = band(split:split+4, 2);
case 2
x = band(split-1:split+3, 1);
y = band(split-1:split+3, 2);
end
, 1) = linspace(x(1), x(5), resolution)';

, 2) = spline(x, vy, yy(:,1));

i =resolution:-1:1
if yy(i, 2) <=5
startnrb = yy(i, 1);

el se
br eak;
end
t = md;
i = md:n
if band(i, 2) <=5
split =1i;
endnrb = band(i, 1);
el se
br eak;
end
plit < n-2
X band(split-2:split+2, 1);

\ band(split-2:split+2, 2);
switch split
case n-1
band(split-3:split+1, 1);
band(split-3:split+l, 2);

X
y
case n

x

band(split-4:split, 1);
y band(split-4:split, 2);
end

, 1) = linspace(x(1), x(5), resolution)';

, 2) = spline(x, vy, yy(:,1));

i = l:resolution
if yy(i, 2) <=5
endnrb = yy(i, 1);
el se
br eak;
end
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bandwi dth = endnrb - startnrb;

msrisk.m

%this code takes a risk plot and spec limts and returns risk at

% spec and at spec limts.
% structure of returning matrix

%retval =

% [ nean [ owri sk hi ghri sk

% | spec [ owri sk hi ghri sk

% uspec | owri sk hi ghri sk

% m npos m nri sk 0

% nmaxpos maxri sk 0 ]
function retval = nmsrisk(irisk, speclimts)

xrisk = [nean(speclimts), speclimts ];

% quality characteristic

retval (1:3, 1) = xrisk';

% low at md spec and spec limts

splow = spline(irisk(:,1), irisk(:,3));
retval (1:3, 2)= ppval (splow, xrisk)";

% high at md spec and spec limts
sphigh = spline(irisk(:,1), irisk(:,4));
retval (1:3, 3)= ppval (sphigh, xrisk)';
% maxi mum posi tive risk

xX = linspace(speclimts(l), speclints(2), 200);
finerisk(1,:) = ppval (splow, xx);
finerisk(2,:) ppval (sphi gh, xx);
[ymn, imn] = mn(finerisk(1,:));
[ymax, imax] = max(finerisk(2,:));
retval (4, 1: 2) [xx(imn) ymn];

retval (5, 1: 2) [ xx(imax) ymax];
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