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EXECUTIVE SUMMARY

The overall objective in this research project is to develop advanced pavement
structural analysis models for more accurate solutions with fast computation schemes. Soft
computing and modeling approaches, specifically the Artificial Neural Network (ANN) and
Genetic Algorithm (GA) techniques, have been implemented to develop forward and
backcalculation type pavement analysis models based on the validated nonlinear ILLI-PAVE
finite element solutions of the most commonly found/constructed flexible pavements in the
State of lllinois. The developed pavement evaluation toolbox can be used for rapidly and
more accurately backcalculating field or in-service pavement layer properties and
thicknesses; predicting critical stress, strain, and deformation responses of these in-service
pavements in real time from the measured Falling Weight Deflectometer (FWD) deflection
data; and incorporating these predicted critical pavement responses, such as tensile strain
for asphalt fatigue, directly into the lllinois Department of Transportation’s (IDOT’s)
mechanistic pavement analysis and design with emphasis on extended life asphalt
pavement design concepts. The outcome of the project’'s successful research efforts now
provides IDOT with a field validated nondestructive pavement evaluation professional ANN
(ANN-Pro) software package to assess pavement condition through FWD backcalculation
and eventually help assess pavement rehabilitation strategies. In addition, a second
software package also developed in the project provides the framework SOFTSYS, Soft
Computing Based Pavement and Geomaterial System Analyzer, which estimates full-depth
asphalt pavement thickness when there is no thickness data available for the pavement
section where FWD testing is performed.
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CHAPTER 1: INTRODUCTION

1.1 OVERVIEW AND PROBLEM STATEMENT

Evaluating structural condition of existing, in-service pavements constitutes annually
a major part of the maintenance and rehabilitation activities undertaken by State Highway
Agencies including lllinois Department of Transportation (IDOT). Accurate estimation of
pavement geometry and layer material properties through the use of proper nondestructive
testing and sensor technologies is very important for evaluating pavement’s structural
condition and determining options for maintenance and rehabilitation. For this purpose,
pavement deflection basins gathered from the nondestructive Falling Weight Deflectometer
(FWD) test data are commonly used to evaluate pavement structural conditions. Often these
interpretations of FWD test data also require the layer thicknesses of the tested pavements
for backcalculation of the pavement layer properties. With the recent AASHTO move
towards adopting mechanistic based pavement analysis and design concepts and
procedures nationwide, interpretations of FWD data from routine nondestructive testing
currently demands the use of advanced multi-layered and finite element (FE) solutions for
proper analyses of pavement structural conditions. According to IDOT’s mechanistic based
pavement analysis and design, algorithms based on the ILLI-PAVE FE solutions are used
for this evaluation (Thompson 1989). Recently, use of artificial neural network models
trained with ILLI-PAVE FE solutions proved to make considerable improvements over the
statistical algorithms currently in use.

In the past 15 years, there has been an increased interest in a new class of
computational intelligence system, known as artificial neural networks (ANNs), for use in
pavement systems applications. ANNs have been found to be powerful and versatile
computational tools for organizing and correlating information in ways that have proven
useful for solving certain types of problems too complex, too poorly understood, or too
resource-intensive to tackle using more-traditional computational methods. ANNs have
been successfully used for tasks involving pattern recognition, function approximation,
optimization, forecasting, data retrieval, and automatic control, to name just a few.

As ANNs are a useful complement, while being superior in performance, to more-
traditional numerical and statistical methods, their use has been primarily in the following
areas: materials characterization/modeling, pavement distress classification, pavement
structural modeling, pavement performance prediction, and finally, pavement rehabilitation
in the forms of nondestructive evaluation and remaining life estimation. There have been
several successful studies of using ANNs to predict the pavement layer moduli using the
Falling Weight Deflectometer (FWD) deflection data (Gucunski and Krstic 1996; Gucunski et
al. 1998; loannides et al. 1996; Khazanovich and Roesler 1997; Kim and Kim 1998; Lee et
al. 1998; Meier et al. 1997; Meier and Rix 1993; Meier and Rix 1994; Meier and Rix 1995;
Williams and Gucunski 1995). The NCHRP1-37A research project team working on the
development of the new Mechanistic-Empirical Pavement Design Guide (MEPDG) have also
recognized ANNs as nontraditional, yet very powerful computing techniques and took
advantage of ANN models in preparing the MEPDG concrete pavement analysis package
(http://www.trb.org/mepdg/). The power of ANNSs in pattern recognition and their superiority
for correlating nonlinear relationships between the inputs and outputs of a problem make
them an excellent tool for the structural evaluation of pavements using both static and
dynamic deflection basins. Among the various State DOT’s and government agencies that
have already used ANNSs in nondestructive evaluation of pavements are:




(1) Texas DOT with a primary use in the development of a methodology based on
ANNs to compute the remaining life of flexible pavements and compare results with field
data from the Texas Mobile Load Simulator (Abdallah et al. 1999);

(2) Kansas DOT used ANN-based distress models to predict longitudinal joint
spalling for concrete pavements in Kansas (Basheer and Najjar 1996); and

(3) Waterways Experiment Station employed ANNs as surrogates for WESLEA in a
computer program for backcalculating pavement layer moduli and cutting the processing
time drastically (Meier et al. 1997).

In recent successful applications at the University of lllinois, the use of ANNs was
introduced for backcalculating the pavement layer moduli and predicting the critical
pavement responses directly from the Falling Weight Deflectometer (FWD) deflection basins
(Ceylan et al. 2004). ILLI-PAVE 2005 finite element program (Elliott and Thompson 1985;
Thompson 1987; Thompson 1992; Thompson 1994; Gomez-Ramirez and Thompson 2001),
extensively tested and validated for over three decades, has been used as the primary
analysis tool for the solution of full-depth and conventional flexible pavement responses
under the standard 9,000-Ib FWD loading. ANN models then trained with the results of the
ILLI-PAVE FE solutions have been found to be viable alternatives to backcalculate the
pavement layer moduli and predict the critical pavement responses based on the FWD
deflection data. The trained ANN models are capable of backcalculating the pavement layer
moduli and predicting the maximum stresses and strains with very low average absolute
errors of those obtained directly from ILLI-PAVE analyses. These error magnitudes are
commonly much smaller than the ILLI-PAVE algorithms currently in use by IDOT. The direct
prediction of critical pavement responses from the FWD deflection basins also offers an
added advantage when used together with IDOT’s mechanistic based pavement design.

When properly trained ANN models are used as surrogate advanced ILLI-PAVE
structural models to backcalculate pavement layer properties, the speed of these ANN
models can be used as an advantage in traditional backcalculation schemes. With the
combination of a powerful and robust searching algorithm, such as Genetic Algorithms
(GAs), additionally pavement layer thicknesses can be estimated from just the FWD
deflection basins. Thickness variability is a real issue in the field, and coring is not always an
option to determine layer thickness. It is also one of the key inputs to the pavement
management systems. With this idea, the SOFTSYS approach has been under
development to the extent that its full potential will be demonstrated based on the current
promise for truly nondestructive pavement analysis.

1.2 RESEARCH OBJECTIVES

The overall objective in this research project is to develop Artificial Neural Network
(ANN) models based on the ILLI-PAVE finite element solutions as a pavement evaluation
toolbox for:

1) rapidly and more accurately backcalculating field or in-service pavement layer
properties;

2) predicting critical stress, strain, and deformation responses of these in-service
pavements in real time from the measured FWD deflection data;

3) incorporating these predicted critical pavement responses, such as tensile strain
for asphalt fatigue, directly into IDOT’s mechanistic pavement analysis and
design with emphasis on extended life asphalt pavement design concepts.

In addition to these objectives, the motivation of this research study has also been to

develop the framework SOFTSYS, Soft Computing Based Pavement & Geomaterial System
Analyzer, with the purpose of:



1) determining pavement thickness for Full-Depth Asphalt Pavements (FDP) as well
as the pavement layer properties reliably using FWD deflection basin data
without any coring requirements in the field;

2) extending the possibility of using SOFTSYS for Full-Depth Asphalt Pavements on
Lime Stabilized Soils (FDP-LSS) in order to cover wider ranges of pavements in
lllinois; and

3) validating further the results of SOFTSYS with the field data obtained using
Ground Penetrating Radar (GPR) as well as the core thickness data obtained
from the road sections where GPR is performed.

By successful completion of this study, the intent has been to provide IDOT
engineers with a field validated nondestructive pavement evaluation professional ANN
(ANN-Pro) model toolbox to assess pavement condition and eventually help assess
pavement rehabilitation strategies. In addition, SOFTSYS program has been developed to
provide solutions when there is no thickness data available for the pavement section, where
FWD testing is performed.

1.3 RESEARCH METHODOLOGY

The research was performed following the major tasks for reaching the study goals:

Task 1: Work with the FWD team of the IDOT Bureau of Materials and Physical
Research and Districts to identify the types and properties of different flexible pavement
layers existing in Illinois.

Task 2: Conduct ILLI-PAVE finite element (FE) runs on the commonly found/
constructed flexible pavement sections considering stress-dependent pavement layer
behavior. A database of FE runs will be developed covering the different pavement layer
thicknesses, layer moduli, and deformation characteristics of the pavement layers.

Task 3: Develop forward and backcalculation type ANN models based on the ILLI-
PAVE FE solutions for the evaluation of flexible pavement systems. Different ANN
architectures will be searched and trained to determine the optimum network architecture (or
model) that best captures the behavior of pavement sections in lllinois. Several different
network architectures will be trained using different number of input parameters. Some of
the network architectures will be designed for directly predicting the critical pavement
responses (maximum stresses, strains and deflections) from the FWD deflection basins.
These networks will be crucial for implementing the mechanistic-based pavement design
concepts.

Task 4: Use both existing FWD data, available and gathered from previous lllinois
Cooperative Highway Research Program studies, and new field FWD data, collected in
recent years by IDOT engineers running FWD tests, to validate the ANN models.

Task 5: Prepare an ANN based forward and backcalculation structural analysis
toolbox as user-friendly software and demonstrate the use of this toolbox with real world
examples and applications.

Task 6: Develop models for SOFTSYS full-depth asphalt pavement layer properties
and thicknesses and calibrate these models linking to the actual field FWD data available
from IDOT. The results will need to be verified with the actual field data. GPR is selected as
the most reliable way of determining thickness of pavement sections. In addition,
construction thickness information is required to determine the thickness of the pavements.
The variability in the thickness as well as other pavement properties is a critical issue.
Therefore, along with the FWD testing, GPR testing will also be performed on selected full-
depth asphalt pavement sections.



1.4 REPORT ORGANIZATION

Chapter 2 of this report introduces FWD testing as the most popular pavement
nondestructive testing and evaluation approach and gives a complete literature review of the
backcalculation methods including the background information provided on the advanced
methods used in this study, i.e., ANNs and Genetic Algorithms (GAs). The development of
ANN based structural models are described in Chapter 3 for full-depth asphalt and
conventional type pavements found/constructed in lllinois on both natural and lime stabilized
subgrade soils. The developed ANN models are also validated with field FWD data in
Chapter 3. Chapter 4 introduces the SOFTSYS approach based on the combined use of
ANNs and GAs for pavement layer modulus and thickness determinations applied mainly to
full-depth asphalt pavements. Chapter 4 also includes field validation of the SOFTSYS
methodology. Finally, a summary and the major findings of the research study are given in
Chapter 5.



CHAPTER 2: LITERATURE SURVEY

In the area of transportation geotechnics, the practice of determining the pavement
layer properties using surface deflections is commonly referred to as backcalculation. The
backcalculation of layer properties including pavement layer moduli and even layer
thicknesses from surface deflection measurements plays a major role in the structural
evaluation of pavements, design of overlays and management of in-service pavements.
There are mainly two approaches to determine the existing condition of a pavement; either
by destructive or non-destructive means. In the last three decades, the improvements in
technology have caused the non-destructive testing (NDT) methods to become more
popular since there is neither disturbance to the integrity of the material nor the sampling of
it. Moreover, they are quite easy to use, repeatable, and they can be performed much more
rapidly than destructive tests. These advantages result in much less overall cost in the long
run when compared to those of the destructive testing methods. Against all the advantages,
the reliability of NDT methods certainly depends on the accurate interpretations of the test
results and the precise determination of the pavement layer material properties, such as
pavement layer stiffness or modulus and layer thickness. Falling Weight Deflectometer
(FWD) testing is the most popular NDT method for evaluating pavements. It provides
pavement surface deflections recorded by several offset sensors in response to a constant
load dropped from a specific distance at a certain frequency. These deflections are
essentially used for structural evaluation of pavements.

2.1 FALLING WEIGHT DEFLECTOMETER TESTING

Falling Weight Deflectometers (FWDs) have been known as NDT devices which can
exert an impulsive load on the pavement and record the resulting deflections on the
pavement surfaces at several distances from the load. As the name implies, an FWD
imparts its test load by means of a specified weight (usually between 110 and 660 Ibs.)
falling a given distance (up to 16 in.) and striking a buffered plate resting on the pavement
surface (see Figure 2-1). It can produce a peak dynamic force typically between 1,500 and
24,000 Ibs in 25-30 milliseconds (see Figure 2-2). The load is transmitted from the rubber
buffers to pavement through a 5.91-in. radius steel plate underlain by a rubber pad, which
helps applying the load uniformly on the pavement surface. The FWD impulse load duration
of 25 to 30 milliseconds approximates the same load duration of a vehicle traveling at 40 to
50 mph (Ulliditz and Stubstad 1985).

Deflections with FWD equipment are typically measured at the center of the load and
up to six other locations. A typical test configuration is shown in Figure 2-3. One advantage
of FWD is that it is better than any other testing equipment in replicating the load histories
and deflections produced by moving vehicles. This deflection profile or basin is primarily
affected by the properties of individual pavement layers as well as the magnitude and
frequency of the loading (Shahin 2005). In comparing elastic properties calculated from an
earlier Dynaflect test with results from the FWD, it was found that dynamic effects were less
important in the FWD results due to the higher frequencies (Roesset and Shao 1985).
Hoffman and Thompson (1981) compared the FWD with the Road Rater Model 400B and
the Benkelman Beam NDT equipment. They concluded that the FWD produced a deflection
which best represented conditions under a moving wheel load. Since FWD is the closest
device for duplicating the deflections of a moving truck (Ulliditz and Stubstad (1985), it has
been widely accepted in the world. Among many FWD’s described in the literature, the
three most commonly used and commercially available ones are the following:

1) Dynatest Model 8000 (Dynatest Consulting, Inc.);

2) KUAB FWD Models 50 and 150 (KUAB America);
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3) JILS FWD (Foundation Mechanics, Inc.).
IDOT has been using the most commonly utilized FWD device, Dynatest Model 8000

(see Figure 2-1). It is a trailer mounted device which may be towed by passenger vehicles.
In 2007, IDOT purchased a JILS 20T truck-mounted FWD.

Figure 2-1. Dynatest.rl.:.\'/'\'/D"d‘elviCé used by IDOT.
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Figure 2-2. Haversine loading applied by FWD.
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Figure 2-3. Locations of FWD sensors and schematic drawing.

FWD test deflection basins can be successfully interpreted to identify the existing
condition of a pavement under traffic loading. For example, at a specified temperature, small
deflections may indicate the response of a strong pavement structure, while larger ones
might dictate the existence of weaker sections. Diagnosing the current conditions of
pavements, however, requires inversion of mechanical properties through evaluation of
FWD data.

2.2. BACKCALCULATION METHODS

Backcalculation is an inverse type of engineering problem, which is generally hard to
solve analytically due to its ill-posed nature. The sensitivity of solutions, i.e., backcalculated
layer properties, to the deflections as the variables of the inverse problem is generally quite
high. In addition, the solutions typically require searching of a multidimensional nonlinear
space formed by the variables, where traditional numerical approaches do not operate well
(Liu and Han 2003). The computational procedure to solve this problem effectively usually
includes both a pavement response model and an optimization algorithm. Indeed, the key
elements for the effective solution are to understand the nature of the problem and to select
the appropriate methodology that relaxes the complexity of the inversion process.

The concept of backcalculation for pavements became popular in the last three
decades along with wide use of mechanistic-empirical methods in the design of pavements
and developments in pavement management systems. Backcalculation approaches for
obtaining pavement moduli using NDT data can be grouped into three methods (Anderson
1988):



* Simplified methods;
¢ Gradient relaxation methods;
* Direct interpolation methods.

Among all of them, the most popular ones are gradient relaxation methods. In this
type, generally a mathematical model of the pavement is constructed and subjected to the
appropriate NDT load to obtain surface deflections as a function of pavement layer
properties. This model can then be run with various layer properties until a satisfactory
solution set is found for which the measured deflection basin is produced (see Figure 2-4).

Trial Computed Measured
Seed  ___, Layer Deflection <——» Deflection
Moduli Moduli Basins Basins .

PAVEMENT
RESPONSE
MODEL

Figure 2-4. Traditional iterative backcalculation procedure (Meier 1995).
Alkasawneh summarized (2007) the main steps of the backcalculation as follows:

* Define the input parameters of the pavement system including: thickness of each
layer, Poisson’s ratio, etc.

* Assume moduli seed values for the pavement system. Seed moduli values can
be assumed based on experience or based on typical moduli values. Moduli
values can be different based on the forward method implemented in the
backcalculation program.

* Calculate the pavement deflections, using the forward program, at the FWD
geophone locations (along the surface).

e Compare the calculated deflections with the measured deflections. If the
difference between the calculated and measured deflections is acceptable, then



the assumed layer moduli are the actual moduli. Otherwise, the assumed layer
moduli are not the actual moduli and the assumed moduli should be refined.
* Repeat steps if necessary.

In addition to these, many computational methods were proposed. Linear regression
methods, artificial neural networks (ANNs), genetic algorithms (GAs), and fuzzy systems
were mainly utilized as backcalculation techniques. A recent study by Goktepe et al. (2006)
provides an extensive summary of these methods. Particularly, many researchers found
soft computing methods to be useful due to their advantages such as non-universality and
noise tolerance (Ghaboussi 2001; Ghaboussi and Wu 1998), which can properly deal with
the difficulties naturally existing in the backcalculation problem. As a sub-class of soft
computing methods, the development of ANNs and GAs for pavement backcalculation
studies will be reviewed.

2.3 ARTIFICIAL NEURAL NETWORKS (ANN'’S)

ANNs are computational models for information processing. ANNs are mainly
classified as a subclass of soft computing tools that duplicate some of their fundamental
properties from biological systems (Haykin 1999; Hertz et al. 1991; Reed and Marks 1999).
They can be trained to perform certain tasks. They are mainly used as one of the most
powerful data-mining methods. They can tolerate the error in the dataset to a certain extent
(called imprecision tolerance) and they are mostly valid within the ranges of the training
datasets (called non-universality). They are quite robust and practical techniques for
computationally complex problems (Ghaboussi 2001). In many civil engineering applications,
they are used as nontraditional computing tools that can capture nonlinear relationships
between inputs and outputs of natural phenomena or any numerical methods such that well
established non-linear regression tools fail due to the complex nature of the problem
(Ghaboussi and Wu 1998).

The main type of Artificial Neural Networks (ANN) is referred to as a multilayer, feed-
forward neural network which was composed of single processing elements called
perceptrons (Rosenblatt 1958). The following are essential to feed forward neural networks:
(1) A feed-forward propagation rule, (2) a network topology (i.e., the number of nodes,
layers, and their connectivity), and (3) a learning rule.

The error back-propagation algorithm (also known as the generalized delta rule) is
the most commonly used learning rule. The feed-forward neural networks which use the
error back-propagation learning rule are generally referred to as back-propagation neural
networks. A typical back-propagation neural network used in this study is sketched in
Figure 2-5. The multilayered back-propagation ANN has usually one input layer, one output
layer, and the constructed processing elements (artificial neurons) named as hidden layers.
The hidden layers are sandwiched between the input and output layers. The network
operation consists of a highly nonlinear functional mapping of the neurons in hidden layers
between the input and output variables.

2.3.1 Backpropagation Learning Algorithm

In perceptrons, each artificial neuron or processing element receives several input
signals X originating from previous nodes and then processes each signal considering its
connection weight W (see Figure 2-6). The relationship between the input signals and the
level of internal activity of the processing element is given by:



AP

AP : Direction of Activation Propagation;

BP : Direction of Error Back-Propagation;
i, to i, : Input variables;
h,, to hy, @ Artificial neurons (processing elements);

0, to 0, : Output variables.

Figure 2-5. A typical backpropagation neural network.
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Processing Element i
(Artificial Neuron i)

SUM
INPUTS |FUNCTION

TRANSFER

Wi
net, =¥ (W X)-6; | y; = f(net)
J Yi
Output
Win (0 to 1)

X1 o . n - Setof Inputs;

W;; : Connection Weights (Strength of a Single Biological
Synaptic Connection);

0, : Bias Term (Corresponds to an Activation Threshold);
net, : Net Input Signal (Level of Internal Activity);
Transfer Function : f(x) = 1/(1+e™X), Sigmoidal Function.

Figure 2-6. Summation and transfer functions of a typical artificial neuron.
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N
neti = Z(VVIJ XJ) - ei (2-1)
j=1

where net; = Net input signal (level of internal activity);
W;; = Connection weight between artificial neurons i and j;
X; = Value of signal coming from previous node j;
0, = Bias term of node i (corresponds to an activation threshold);
N=Number of input signals from previous nodes.

When the weighted sum of the input signals exceeds the activation threshold 6,, the
artificial neuron outputs a signal y; dictated by a transfer function f(x). The output signal is
then expressed as a function of the net input signal by:

y; = f(net;) (2-2)
where

1
f(x)= m (2-3)

is a sigmoidal function which gives a value between 0 and 1 for the output y;.

The neural network modifies the connection weights between the layers and the
node biases in ensuing iterations to allow a type of learning for the network. The weights
and node biases are shifted until the error between the desired output and the actual output
is minimized. The learning process is described as follows: “Learning (or training) is the
process whose objective is to adjust the link weights and node biases so that when
presented with a set of inputs, ANN produces the desired outputs.”

After each feed-forward sweep of the ANN is completed in the direction of activation,
the squared error terms E* between the outputs y; and the target values t; (actual values in
the output layer) are computed from the following:

EX = %Z[t!‘ — yik]2 (2-4)
i

where i denotes the individual neurons, and superscript k represents the individual data
values from the training data set. Note that the output y; in the above equation is actually a
function of the sigmoidal function given in Equation 2-3.

The change in the connection weights (AW;) between the nodes to be adjusted
during the learning process is related to the minimization of the average squared error E.
To minimize the squared error E¥, the derivative of the error with respect to the connection
weight Wj; between nodes i and j is required as follows:

k
oE oE
AW =025 =0 3| S5

(2-5)
oW k LOW;

where n is a learning coefficient > 0. Using the chain rule of differentiation, the derivative
term AE* /0W; can now be written as:

12



k k
OB _ OE 0y, aneti__s_kaneti__sikx

=8 —— 1= (2-6)
OW;  dy; onet; W, oW

j

in which 5 = (dy;/onet;)*( onet, 10W;) is defined as “delta” term of the generalized delta rule
and is given by:

) ('[ik —y:() f’(netik) for output layers
6i =
ZSEWim f’(net:() for hidden layers
m

where the letter “m” represents the nodes in the network below the current i'th layer towards
the output layer (see Figure 2-5). Since the back-propagation algorithm starts from the
output layer, the calculations progress implicitly in the direction towards the input layer. The
derivative of the sigmoidal function f'(x) to be used in the above equation can be given in
terms of the function:

f'(x) =1(x) {1-1(x)} (2-8)

now substitute Equation 2-8 in Equation 2-7 for easy computation of deltas.
During each iteration (it), the connection weights from node j to i are updated as
follows:

W (it +1) = Wy (it) + 1 387 X| +o [Wy(it) - Wy (it-1]  (2-9)
k

where a is called the momentum (or acceleration) term added to stabilize the training
process. The summation is done over all individual data in the training set. The inputs to
the nodes in the back-propagation direction are taken from the outputs of the nodes in the
preceding layer, i.e., X* =y = o (for the first hidden layer). Similarly, the bias term 6; is
also updated at each iteration by an equation of the form:

0;(it +1) = 0,(it) + 1 385 +a [0;(it) — 0; (it — 1] (2-10)
k

As the iterations progress, the network repeatedly cycles through the training set.
The parameters a and n in Equations 2-9 and 2-10 help provide an accurate approximation
of the unknown mean squared error (MSE) minimum. lterations must be continued until an
apparent decrease in the maximum MSE to an acceptable level is observed. By using the
momentum term a in the search, settling into a local minimum or oscillating endlessly about
the global minimum can be prevented.

2.3.2 FWD Backcalculation using ANNs

When FWD backcalculation is considered, an ANN model can be trained to map
deflection basins back onto their corresponding pavement layer moduli. One way to train
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such a network would be to use experimentally determined deflection basins along with
independently measured pavement layer thicknesses and moduli. However, it is often
difficult to obtain representative, undisturbed samples with which to make a laboratory
determination of the pavement moduli. Furthermore, because laboratory testing is expensive,
there is an insufficient quantity of experimental data covering a broad-enough range of
pavement layer moduli and pavement layer thicknesses to successfully train a neural
network (Meier 1995).

Instead, synthetic deflection basins calculated using pavement analysis programs
such as ILLI-PAVE can be used to create synthetic deflection basins. This allows precise
control of the pavement layer properties used to train the network. The basic neural network
training procedure developed for this study can be viewed as a closed loop (see Figure 2-7).
A mathematical model is used to calculate a synthetic deflection basin for a presumed set of
pavement layer properties. The artificial neural network is then taught to perform the inverse
operation of mapping the synthetic deflection basin back onto the presumed set of
properties. At first, the neural network produces a random mapping; however, by repeating
the training process many times for many different pavement profiles, the neural network will
eventually learn the appropriate inversion function (Meier 1995).

Pavement Layer

Properties ‘

PAVEMENT OUTPUT LAYER
! RESPONSE

HIDDEN
LAYER(S)

INPUT LAYER

Deflection
Basins

Figure 2-7. Traditional iterative backcalculation procedure (Meier 1995).

Trained ANN models need to be tested based on an independent dataset within the
ranges that they were trained. A sufficiently wide dataset obtained from the pavement
analysis can be chosen independently considering the given ranges of material and
geometry properties and used as the testing dataset for the verification of proper ANN
learning. The remaining data are then used for the training and learning procedure.
Whether the trained ANN models are capable of producing the same database (with the
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given inputs to obtain outputs or vice versa) can be checked quickly in this manner. Figure
2-8(a) and (b) show proper and improper learning curves for training and testing datasets.
Improper learning causes ANNs to memorize the given training dataset and to lose the
capability of generalization (Reed and Marks 1999). Although training takes a long
computation time, testing is often much faster (on the order of micro seconds) with the
already set weighted connections. This advantage also facilitates the use of trained ANNs
as quick pavement analysis tools for a field engineer to use them without the need for any
complex inputs.

x 10 ANN Progress Curve
4.5 T : . .

2.5 g
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e Testing Data
2 3

Mean Square Error (MSE)
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(a) proper learning
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1+ oty t ARSI v vt sl an Povnyw o NG|

0 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Epochs

(b) improper learning

Figure 2-8. Typical ANN learning curves.
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2.4 GENETIC ALGORITHMS (GA’S)

Genetic algorithms are the randomly directed search techniques that mimic natural
evolution in its form and search operators. The defining components of a genetic algorithm
(GA) are as follows:

* The genotype/phenotype representation of the problem domain;

¢ Fitness evaluation;

e Selection scheme;

e Crossover method;

e Mutation rate.

Variations in each of the above items have been examined by researchers, and
several generations of improvements within each area have been realized. The theory
describing the behavior of GAs, however, remains grounded in the schema theorem and the
principle of minimal building blocks as defined by Holland (1975) and Goldberg (1989). Both
principles recommend the selection of a representation of fixed length that encodes the
parameters of the problem in binary form. This is readily confirmed by the vast number of
applications that use this standard GA representation.

GAs were introduced by Holland (1975) as a technique that supports adaptation in
natural and artificial systems. Most of the research that followed, however, realized that GAs
provided a method highly suited for performing optimization. De Jong (1975) investigated
the performance of GAs as function optimizers by applying a simplified GA, which consisted
of roulette wheel selection, simple crossover, and simple mutation, to a test bed of five
functions. This GA formulation has become known as the simple GA (SGA). In the same
research effort, De Jong also studied several variations of the SGA that included providing
elitism and crowding during the selection process. Goldberg (1989) provides a thorough
research review on the different GA proposed formulations and discusses the results
obtained from applying SGAs to numerous applications. Currently, the majority of the GA
optimization applications use the structure of the SGA in conjunction with fitness
proportional selection or tournament selection.

SGAs and traditional optimization methods can be applied to the same optimization
problems. SGAs have four features that make them fundamentally different from traditional
optimization methods (Goldberg 1989; Raich 1999):

(1) GAs decodes variables, they do not utilize them directly;

(2) GAs considers a population of solutions, they do not emphasize a single

solution;

(3) GAs do not extra information such as derivatives of the variables;

(4) GAs use probabilistic transition rules, not deterministic ones.

These features provide flexibility in applying SGAs to diverse and sometimes
previously unapproachable set of optimization problems. The representation of the objective
function and constraints and the ability to handle discrete variable types without requiring
logical constraints are among some advantages(Raich 1999). More importantly, working
with a population of individuals instead of a single individual reduces the chance of
converging to a local optimum.

GAs borrow the following genetic terms to explain the form and processing of the GA
representation and operators (Raich 1999):

* (Gene => encoded parameter value;

* Allele => all possible values that can be encoded for a specific parameter;

* Genotype => the total encoded parameter information in the GA string;

* Phenotype => the decoded solution from the GA string;

* Crossover => exchanging string segments between two selected GA strings;
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* Mutation => changing a single bit or value randomly on a single GA string; and
* Selection => performing a "survival of the fittest" reproduction of GA strings.

In GAs, a single solution represented by a string is called an individual, and the set of
solutions is termed a population of individuals. The fitness evaluation for each solution is
provided for different design cases that are called environments. A single iteration of the GA
is a generation; the entire GA search time is the evolutionary time (Raich 1999).

Many researchers have investigated the application of GAs in optimization and
design (Michalewicz 1996). The benefits of GAs over other methods used in search,
including mathematical programming and heuristic search methods are (Rasheed and Hirsh
1997):

* The provision of a global search method, which is more effective for searching
multi-modal and deceptive problem domains than the local search methods
provided by traditional and heuristic search methods.

* The ability to easily incorporate discrete, continuous, and mixed variables into
the constraint formulation.

e The ability to handle arbitrary objective functions that are nonlinear,
discontinuous, ill-defined, and deceptive without requiring gradient information.

e The ability to perform fithess evaluations and genetic manipulations
independently for each individual, which makes GAs suitable for parallel
computation.

2.4.1 Simple Genetic Algorithms (SGA’s)

SGAs are identified by the use of three standard genetic operators: selection scheme
(generally roulette wheel selection), simple crossover, and simple mutation as defined by
Goldberg (1989). These three genetic operators are applied to a population of fixed length
strings consisting solely of binary bits (0 or 1) that represent a fixed set of parameter values.
Real or integer parameter values are encoded in the string in a predetermined order using
“n” bit binary representation for each parameter. The resulting string of binary bits is called
the genotype. Simple crossover and mutation are performed on the genotype. The binary bit
strings are decoded into the real or integer parameter values to obtain the solution, which is
called the phenotype. The expressed phenotype provides the solution evaluated by the
fitness function.

The steps required to apply the SGA are shown in Figure 2-9 (Raich 1999). The
designer selects the size of the population and randomly initializes all of the individuals in
the population. The solution represented by each individual is decoded from the genotype
and evaluated using the defined fitness function. The genetic operations of selection,
crossover, and mutation are then performed to determine the new population. The iterative
process of evaluation and genetic manipulation is continued until convergence is reached.
The SGA evolutionary search process is summarized in six steps:

1) Generate random initial population of n individuals;

Determine the fitness of each individual;

Select n individuals based on fitness using fitness proportional selection;
Perform crossover and mutation on selected individuals;

Form new population of n individuals; and

Repeat steps 2 through 5 until the stopping criterion is satisfied.

CICRSROR
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Generation Cycle

Initial Population of Strings

A

Fitness Evaluation

A

Selection

4

Crossover

A

Mutation

Stopping Criteria Satisfied?

Final Population of Strings

Figure 2-9. Simple genetic algorithm (SGA) (Raich 1999).
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2.4.1.1 Simple Genetic Algorithm Genotype/Phenotype Representation

In SGAs, each parameter value is represented as “n” bit binary number. The
encoded binary values are concatenated together to form a binary string. The order of the
encoding is predetermined by n one to one mapping of the parameter values to the encoded
binary values. The string length is fixed in SGA and is determined by adding the lengths of
the individual n bit binary numbers. The number of bits, n, used to encode each parameter
sets explicitly the range of the parameter values, such as a 2-bit binary number that is used
to represent the integer numbers (0,1,2,3). If other ranges of integer or decimal precision
numbers are required, a mapping is used to adjust the ranges for continuous parameters or
to assign values for discrete parameters. An example for multivariable phenotype

representation is provided in Tables 2.1 and 2.2.

Table 2.1. Real Value Representation of Phenotypes

Population Variable 1 Variable 3
1 17 21
2 25 10
3
4
5
maxPop
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Table 2.2. Bit String Representation of Phenotypes for Use in Genetic Algorithms

Pop

ulati Variable 1 Variable 3

on

# |1 1 2| 3|4 ]| 5 14 |15 | 16 | 17
1 1 0|0]| 0|1 0 1 0 1
2 1 1 0| 0|1 1 0 1 0
3

4

5

max

Pop

2.4.1.2 Roulette Wheel Selection in Simple Genetic Algorithm

Roulette wheel selection, which is also called fitness proportional selection, was one
of the first selection methods investigated and is still popular in GAs. A fithess value is
assigned to each individual based on the evaluation of the defined fitness function, and
individuals of the population are selected in proportion to their fithess. Each individual j in
the population will have a probability of selection r(x;) based on its fitness value f(x;) divided
by the sum of the fitness values of the population (Equation 2-11):

f(x j)
2 fx) (2-11)
i=1
where m is the number of individuals in the population.
An individual with a high fithess will have an increased chance of being selected for
recombination; those individuals with low fitness may not be selected at all.
Example: Suppose it is desired to maximize the function given in Equation 2-12
z=(x-7)% + (y-3)° (2-12)

with both x and y given on an integer interval [0,7]. For this function, the roulette wheel
algorithm is explained in Table 2.3:
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Table 2.3. Randomly Created Initial Population for the Example Problem
(Population Size = 4)

(f) (9)
(@) ® | © (@) (©) . | Random | (M
Initial . Normalized _ New
. Phenotyp | Fitnes | Genotype | .. o S = z fl Number
Populatio Fitness (%) | ' &« Parent
n-j e (xy) s (f) (x,y) (f, /SUM) i< | Generator | " 5
' b/w 0-100
1 4,1) 13 100001 12.7 12.7 67 4
2 (1,4) 37 001100 36.3 49.0 1 1
3 (6,2) 2 110010 2.0 51.0 69 4
4 (0,4) 50 000100 49.0 100.0 8 1
SUM 102 100

The members of the population are numbered.

Let's assume that the initial population is created randomly for (x,y) in [0,7]
interval.

The fitness values (in this case, it is function we want to maximize) are calculated.
Phenotypes are encoded into Genotypes using 3 bits to represent x and y
separately. The bit values for “x” and “y” are then combined together to form a bit
string.

The fitness values are normalized with respect to SUM of all fitness.

Cumulative sum is used to rank the fitness along a straight line between 1 and
100. It gives the sum of all fitness values from individual one to individual i.
Random Number Generator is used to create random numbers between 0 and
100.

The first individual whose cumulative sum S; is equal or greater than this integer
will be chosen as a parent.

2.4.1.3 Genetic Manipulation in Simple Genetic Algorithm

In SGAs, two individuals are randomly paired from the set of selected individuals to
undergo single point crossover. For each pair of strings, a bit location is selected randomly,
the string is cut virtually at this location (called locus), and the portions of the strings beyond
the cut are exchanged as shown in Figure 2-10. Crossover supports the recombination of
good building blocks by placing the building blocks in new contexts on different individuals
(Holland 1975).

21
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Offspring 1
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Offspring 2

g
of1[1]ofo NECENNFNCIEE

Figure 2-10. Crossover operation.

Bit mutations are used by SGAs to prevent the loss of diversity in the population by
introducing new genetic information or reintroducing previously lost information (Goldberg
1989). For the SGA binary representation, a mutation is applied probabilistically to each bit
in an individual by flipping the bit value from zero to one, or vice versa (see Figure 2-11).
The mutation rate typically is set at a low level of about 1 mutation per 1000 bits. After
mutation has been performed, the new population consists of the children created by the
process of crossover and mutation from the parents selected from the population.

The SGA continues the evolution process until a maximum number of generations is
reached or a stated convergence criteria has been satisfied for the fitness or population
convergence.

Offspring 2 before Mutation

of1f1]ofo FECINNNNNCIN

Offspring 2 after Mutation

EEEINNEN 0 1 1000 1]0]

Probability of Mutation =1

Figure 2-11. Mutation operation with probability of mutation = 1.

2.4.2 Genetic Algorithms in Backcalculation

GAs were effectively utilized for the solution of pavement layer backcalculation
problem in the past. A binary coded simple genetic algorithm (SGA) (Goldberg 1989) with
single point crossover, mutation and ranking selection mechanism was first introduced as a
novel method for backcalculation of pavement layer moduli (Fwa et al. 1997). In this study,
a deflection based objective function was utilized, which seeks for matching deflections
calculated from one of the two different deflection computation approaches (BISAR or
Odemark equivalent layer method) with that from FWD testing. It was also proven that the
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SGA algorithm approach performed better when compared to conventional backcalculation
software that implements different search routines. A similar approach was later developed
for backcalculation of pavement layers with the deflection values obtained from elastic layer
system analyses (Kameyama et al. 1998). The method of heuristic crossover for floating
point implementation was used along with dynamic mutation operator. Moreover, the
implemented ranking selection was modified through exterminating the resembling
chromosomes to prevent the danger of premature convergence. Reddy et al. (2002)
developed a GA based backcalculation program that implements the same philosophy using
an elastic layered pavement software to compute surface deflections. Reddy et al. (2004)
also later determined a set of optimum parameters for backcalculating pavement layer
properties using elastic programs. The optimal set of GA parameters (population size,
crossover and mutation probabilities) was determined using a heuristic approach
implemented through running a GA based backcalculation program called BACKGA.

The papers referenced above (Al-Khoury et al. 2001; Ceylan et al. 2005; Fwa et al.
1997; Goktepe et al. 2006; Kameyama et al. 1998; Loizos and Plati 2007; Meier et al. 1997;
Pichler et al. 2003; Rakesh et al. 2006; Reddy et al. 2002; Reddy et al. 2004; Saltan and
Terzi 2004; Willett et al. 2006) describe the computational approaches to determine the
pavement layer properties. Most of the methodologies presented there can only estimate
pavement layer properties with the already known design thicknesses. The ones that can
determine the thickness, however, require large computational time. Moreover, they all
require advanced material properties to be known in advance, which is very expensive and
difficult. As a result, they are not practical to implement in the field or even as a theory
based solution to the problem.

The previous studies proved that GAs were successful in finding the solution for the
backcalculation problem. However, all the proposed methodologies use the solutions of
elastic layered programs or the programs mainly employed at the design stage of
pavements for matching deflections obtained from FWD tests. On the other hand, loading
conditions for pavements induce high nonlinearity in material behavior. Therefore, proper
pavement modeling requires consideration of nonlinear pavement layer properties, which
makes the solution of the backcalculation problem even more difficult.

In this project, the applicability and performance of a new SGA approach adopted is
investigated to backcalculate the layer moduli and thicknesses of full-depth asphalt
pavements in the field using the pavement responses obtained from the nonlinear finite
element program ILLI-PAVE solutions.
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CHAPTER 3: ARTIFICIAL NEURAL NETWORK BASED
STRUCTURAL MODELS

In this chapter, the development of Atrtificial Neural Network (ANN) structural models
for both forward and backcalculation type pavement structural analyses is introduced.
Forward analysis models are the ones used to analyze pavement sections without the need
for using a pavement analysis program while the backcalculation models are used to
backcalculate pavement layer properties directly from Falling Weight Deflectometer (FWD)
test results. Considering the ANN model development stages, nonlinear finite element
modeling of flexible pavements is discussed first along with its relevant aspects on
pavement layer characterization. Lime stabilization of pavement weak subgrades is also
described to address the need for performing separate analyses for pavements built on lime
stabilized sections. The process of ANN model training is explained next by giving details of
the additional computer programs also developed for collecting and processing the
synthetically generated data from thousands of finite element analyses. Finally, the details of
the developed forward and backcalculation analysis ANN structural models are given with
their performance validations accomplished through the use of field FWD data.

3.1 ILLI-PAVE FINITE ELEMENT MODELING

ILLI-PAVE 2005 finite element (FE) program, the most recent version of this
extensively tested and validated ILLI-PAVE pavement analysis program for over three
decades, was used as an advanced structural model for solving deflection profiles and
responses of the typical lllinois full-depth pavements (FDP) and conventional flexible
pavements (CFP), full-depth pavements on lime stabilized soils (FDP-LSS) and conventional
flexible pavements on lime stabilized soils (CFP-LSS). ILLI-PAVE uses an axisymmetric
revolution of the cross-section to model the layered flexible pavement structure. Unlike the
linear elastic theory commonly used in pavement analysis, nonlinear unbound aggregate
base and subgrade soil characterization models are used in the ILLI-PAVE program to
account for typical hardening behavior of base course granular materials and softening
nature of fine-grained subgrade soils under increasing stress states. Among the several
modifications implemented in the new ILLI-PAVE 2005 finite element code are:

1) increased number of elements (degrees of freedom);
new/updated material models for the granular materials and subgrade soils;
enhanced iterative solution methods;
Fortran 90 coding and compilation, and
a new user-friendly Borland Delphi pre-/post-processing interface to assist in the
analysis (Gomez-Ramirez et al. 2002) (see Figure 3-1).

gen

3.1.1 Falling Weight Deflectometer Simulation

Pavement FE modeling was performed in this study using an axisymmetric (FE)
mesh for all pavement sections considered. Using ILLI-PAVE FE program, FWD tests on
flexible pavements were modeled with the standard 9-kip equivalent single axle loading
applied as uniform pressure of 80 psi over a circular area of 6 in. radius. The FE mesh was
selected according to the uniform spacing option of the FWD sensors as follows: 0 in., 8 in.,
12in., 18 in., 24 in., 36 in., 48 in., 60 in. and 72 in. away from the center of the FWD plate.
The surface deflections corresponding to the locations of these FWD sensors were
abbreviated as Do, Dg, D12, D1, D24, D3g, Dss, Deo and Dzz, respectively.
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ILLIPAVE 2005

Mondinear Finite Element Software for
Pavement Analysis and Design

Pre/Post Processor

by Franco M. Gomez-R amirez

Version 5.00

Uriversity of llinoiz at Urbans-Champaign
Department of Civil Engineering
Tranzportation Faciliies Group

Figure 3-1. ILLIPAVE 2005 finite element software for pavement analysis.

These deflections are in conformity with the uniform spacing commonly used in FWD
testing by many state highway agencies including lllinois (Table 3.1). Typically, finer mesh
spacing was used in the loaded area with the horizontal spacing adjusted according to the
locations of the geophones used in FWD tests. In addition to the deflections, the critical
pavement responses, i.e., horizontal strain at the bottom of AC layer (gac), vertical strain at
the top of the subgrade (gsg), and the vertical deviator stress on top of the subgrade (cpey)
directly at the centerline of the FWD loading, were also extracted from ILLI-PAVE results.
Figures 3-2(a) to (d) show the locations of these responses obtained from different types of
flexible pavements. These critical pavement responses play a crucial role in the context of
mechanistic-empirical asphalt pavement design procedures as they directly relate to major
failure mechanisms due to excessive fatigue cracking and rutting in the wheel paths.

Table 3.1. Falling Weight Deflectometer Sensor Spacing

Sensor Spacing (in.) 0 8 12 18 24 36 48 60 72
Uniform

(used in this study) * + + + + + +
State Highway
Research Program + + + + + N .\

(SHRP)

25



Asphalt
Concreta (AC)
tac, Eacy vac

Dzq Dss Dan Dea Dq2

Unmaodified
Subgrade (SG)
Eri

Asphalt
Concrete (AC)

tac, Eac, vac

Granular
Base (GB)
tEE. KEB

-

Unmadified
Subgrade (SG)
Eri

£56,0DEV %S

(b) conventional flexible pavements

26



Asphalt
Congcrete (AC)

tac, Eac, vac

Lime Stabilized
Subgrade (LSS)

tiss, Eiss, viss

| E56,0DEV AN

Unmadified
Subgrade (SG)
Eri

(c) full-depth asphalt pavements built on lime stabilized soils

Asphalt
Concrete (AC)

tac, Eac, vac

Granular
Base (GB)
tee, Kon

Lime Stabilized i
Subgrade (LSS) i

tiss, Eiss, viss *

| £s6,0DEV AN

Unmodified
Subgrade (3G)
Epy

(d) conventional flexible pavements built on lime stabilized soils
Figure 3-2. Locations of critical pavement responses and deflections.

A total analysis depth of 300 in. was selected for all pavements analyzed.
Depending on the thicknesses of the layers, an aspect ratio of 1 was mainly used in the
finite elements with a limiting value of 4 to get consistent pavement response predictions
from ILLI-PAVE FE analyses (Pekcan et al. 2006). The vertical and horizontal spacings in
the FE mesh were chosen appropriately so that there was neither numerical instability nor
inconsistency in the results due to meshing. Figure 3-3 shows a sample ILLI-PAVE FE mesh
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that was used in the analyses of FDP-LSS. The thicknesses of all layers were selected to
have appropriate ranges encountered for most flexible pavements in lllinois.

<> Svymmetry Axis

||| FWD Load (80 psi)

T T T I I I A
Asphalt Concrete (AC)

1 1
Lime Stabilized Subgrade (LSS)

B
L)
1
I

Subgrade (SG)

tsc = 300 — (tac + tiss)

'
| €

Figure 3-3. Finite element mesh for full-depth pavements on lime stabilized subgrade.

3.1.2 Pavement Layer Characterization

Adequately characterizing pavement layer behavior plays a crucial role for an
accurate backcalculation of the layer moduli. Accordingly, modeling of FDP and CFP
requires accurate material characterizations for the asphalt concrete, granular base and
fine-grained subgrade soil layers. After material shakedown has taken place due to
construction loading and early trafficking of the pavements, most of the deformations under
a passing truck wheel are recoverable and hence considered resilient or elastic. The
resilient modulus (Mg), defined by repeated wheel load stress divided by recoverable strain,
is therefore the elastic modulus (E) often used to describe flexible pavement layer behavior
under traffic loading.

In ILLI-PAVE FE models of the different flexible pavements analyzed, the asphalt
concrete (AC) surface course was always represented with elastic properties, layer modulus
Eac and Poisson’s Ratio vac, for the instant loading during FWD testing. The value of vxc
was taken constant as 0.35.

The modeling of fine-grained subgrade soils, mainly encountered in lllinois, has
received more attention in the last three decades since it has a major impact on all the
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responses predicted under traffic loading within the context of M-E design. Fine-grained
subgrade soils exhibit nonlinear behavior when subjected to traffic loading (Ceylan et al.
2005; Thompson and Robnett 1979). The subgrade stiffness characterized by the resilient
modulus (MR) is usually expressed as a function of the applied the deviator stress through
nonlinear modulus response models. These models were developed based on the results
of repeated load triaxial tests, which forms the basis of evaluating resilient properties of fine-
grained soils (AASHTO-T307-99. 2000).

lllinois subgrade soils are mostly fine-grained, exhibit stress softening behavior, and
can be characterized using the bilinear arithmetic model (Thompson and Elliott 1985;
Thompson and Robnett 1979) with the modulus-deviator stress relationship shown in Figure
3-4. The upper limit deviator stress in the bilinear model, o4y, is dependent on the breakpoint
modulus, Eg;, which is also a function of the unconfined compressive strength, Q,,
expressed by Equation 3-1 (Thompson and Robnett 1979). Eg; is a characteristic property of
the fine-grained soil often computed for lllinois soils at a breakpoint deviator stress oy of 6
psi. The corresponding values and parameters of the bilinear model used in the analyses
are also given in Figure 3-4.

oy * Deviator Stress = o, - oy |

Eri: Breakpoint Resilient Modulus :

ay. Breakpoint Deviator Stress = 6 psi
K3 Slope = 1100 in in. |

Ka Slope = 200 infin, |

aq Deviator Stress Lower Limit = 2 psl
aust Deviator Stress Upper Limit |

Resilient Modulus, Mg

m
o

>

Tl i Tl
Deviator Stress

Figure 3-4. Bilinear model to characterize stress dependency of fine-grained soils.

Egy - (ksi) —0.86
0.307

odul (psi) =Qy (psi) = (3-1)

The granular base (GB) layer provides the essential load transfer in a conventional
flexible pavement. The effect of this layer is predominant in determining the fatigue behavior
of AC layer. The well known K-8 model (Hicks and Monismith 1971) was used in our
modeling study to characterize the stress dependency of elastic, i.e., resilient, modulus in
ILLI-PAVE analyses. In this model, the modulus stress dependency is considered by the use

of two model parameters, “K” and “n”. The model parameter “n” is correlated to K-parameter
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according to Equation 3-2, where K is in psi. A major advantage of the given equation is that
the unbound aggregate modulus characterization model then only requires one model
parameter. K-0 model parameters of different granular materials (K and n values) are also
given in Table 3.2. Typical “K” values range from 3 ksi to 12 ksi based on the
comprehensive granular material database compiled by Rada and Witczak (1981) (Figure 3-

5). Poisson’s ratio was taken as 0.35 when K 2= 5 ksi otherwise it was assumed 0.40.

log;(K) = 4.657-1.807*n (3-2)

Table 3.2. Typical Resilient Property Data for Granular Materials (after Rada and
Witczak 1981)

. Number K (psi) * n*
Granusz_.:\r I\gaterlal of Data Mean Standard Mean Standard
yp Points Deviation Deviation
Silty Sands 8 1620 780 0.62 0.13
Sand-Gravel 37 4480 4300 0.53 0.17
Sand-Aggregate 78 4350 2630 0.59 0.13
Blends
Crushed Stone 115 7210 7490 0.45 0.23

* Er = KB" where Egis Resilient modulus and K, n are model parameters obtained from multiple
regression analyses of repeated load triaxial test data.

1.0s L] Te 1 T I ¥ T T U T T T LIS

107 ¢

T T U S S N |

Kl Value (psi)

3

E log K, = 4.657-1.807 K,
M= 271
R? = 0.68

S.E.E. = 0.22

Ly

10 RS S WS S SR U SR SN S N SR S I
0.0 0.2 0.4 9.6 0.8 1.0 1.2

K2 Value

Figure 3-5. Relationship between K (shown as K1) and n (shown as K2) values for granular
materials identified by Rada and Witczak (1981).
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3.2 LIME STABILIZATION

Pavement design and performance requirements often necessitate the use of a
treated subgrade when pavements are to be constructed on soft and weak subgrade soils.
Lime stabilization is commonly utilized for this purpose as an effective and inexpensive
ground improvement technique in the area of transportation geotechnics. Application of lime,
especially in clayey soils, results in a major improvement in the strength and deformation
characteristics. Moreover, it significantly improves the long term moisture and rutting
susceptibilities of fine-grained soils while also providing a working platform and the needed
expediency in the construction of transportation facilities (TRB 1987). Lime stabilization
helps control the stiffness variability in soil layers, which is one of the most challenging
problems in numerical modeling of geomaterials (Haussman 1990). Various geotechnical
applications can be found in the literature (Moseley and Kirsch 2004). Its improvement
effects on the engineering properties of fine-grained soils or the fine portion of granular soils
facilitate the use of the lime-stabilized subgrade (LSS) as modified pavement layers. The
lime stabilization of clayey subgrade soils has been a popular stabilization technique in the
state of lllinois.

In lllinois, the existence and added performance of a lime stabilized subgrade (LSS)
is usually ignored in pavement design and field evaluation. This is because the LSS is often
constructed to establish a stable working platform for the construction equipment and not
directly considered as an improved structural layer coefficient in the design of pavements
(Little 1999). Even though it is not taken into account in pavement design, the long term
effect of LSS in the pavement structure is certainly reflected in the FWD deflection basins to
affect the backcalculated layer properties. A proper ANN backcalculation model, should
therefore consider the contribution of LSS layer to measured FWD deflection basins and
pavement performance.

Although soil-lime reactions are complex considering the generalized compressive
stress-strain relations for cured and uncured soil-lime mixtures (Little 1999; TRB 1987), in
ILLI-PAVE FE analyses, it was assumed that LSS layer exhibited linear elastic behavior.
Figure 3-6 shows the effect of lime on vertical compressive stress-strain responses of fine
grained subgrade soils (Thompson 1966). Figure 3-7 shows the effect of lime stabilization
on stress-strain characteristics that occur without curing (Neubauer and Thompson 1972).
Figure 3-8(a) and (b) show the immediate effects of lime treatment on soils compacted at
the wet side of optimum moisture contents (McDonald 1969). Figure 3.9 shows a
generalized stress-strain curve developed as a result of an extensive study of lllinois soils
stabilized with lime (Thompson 1966). In summary, the reviewed studies provided adequate
support for modeling the LSS layer using elastic layer properties E,ss and 1ss. The value of
ss was selected to be 0.31 and remained constant with stress levels (TRB 1987).

3.2.1 Preliminary Analyses of Lime Stabilized Sections

The contributions of an existing LSS layer and the nonlinear behavior of underlying
subgrade on FWD deflection profiles and pavement response predictions might inherently
be modeled using ANNs. The main objective of this section is therefore to prove that lime
stabilization has a definite impact on pavement performance for flexible pavements including
full-depth asphalt pavements (FDPs) and conventional flexible pavements (CFPs). Then,
ANN based models can be developed for backcalculation and forward analyses of flexible
pavements including full-depth asphalt pavements on lime stabilized subgrade (FDPs-LSS)
and conventional flexible pavements on lime stabilized subgrade (CFPs-LSS). Proper
quantification of the improvement in pavement responses, i.e., deflections, strains, and
stresses, due to LSS is necessary to facilitate comparisons between FDP vs. FDP-LSS and
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CFP vs. CFP-LSS solutions. This is achieved in this section through FE modeling of both
pavement types and comparing the analysis results.
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Figure 3.6. Typical stress — strain curves for natural and lime treated soils (TRB 1987).
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3.2.1.1 Full-Depth Asphalt Pavements on Lime Stabilized Soils

The motivation in this section was to investigate the differences in the FWD
deflection profiles and predicted pavement responses, if any, between the FDPs and FDPs-
LSS. In an effort to quantify these discrepancies in critical pavement responses and
deflection values, ILLI-PAVE preliminary analyses were carried out for the typical ranges of
layered pavement geometries and material properties (see Table 3.3). The ranges of inputs,
i.e., the thickness of asphalt concrete layer (tac), the thickness of lime stabilized subgrade
layer (t.ss), Eac, ELss and Eg;, were carefully chosen to cover the most values of all FDPs-
LSS found in lllinois. The depth of the untreated subgrade beneath the LSS layer was
computed each time based on the total constant height of the FE analysis mesh. The
similar FDP sections having the same properties but with no LSS were also analyzed using
the ILLI-PAVE FE program.

Table 3.3. Ranges of FDP-LSSs Studied in the ILLI-PAVE Preliminary Analyses

Case tac fiss EAC ELSS ERi SenSItIVIty
Number (in.) (in.) (psi) (psi) (psi) Variable
1 9 4 1x10° 1.5 x 10* 1.0x 103 Eri

2 9 22 1x10° 1.0 x 10° 1.4 x 10*
3 9 22 1x10° 1.5 x 10* 1.0x 10°
4 9 4 1x10° 1.0 x 10° 1.4 x 10*
5 9 4 1x 10° 1.5 x 10* 7.5x10° Eac
6 9 22 2x10° 1.0 x 10° 7.5x10°
7 9 22 1x 10° 1.5 x 10* 7.5x10°
8 9 4 2x10° 1.0 x 10° 7.5x10°
9 3 4 1x10° 1.5 x 10* 7.5x10° tac
10 15 22 1x10° 1.0 x 10° 7.5x10°
11 3 22 1x10° 1.5 x 10* 7.5x10°
12 15 4 1x10° 1.0 x 10° 7.5x10°

The results of preliminary ILLI-PAVE analyses are presented for both LSS and no
lime pavements using the average absolute errors (AAEs) of deflection values and critical
pavement responses in Figures 3-10(a) and (b), respectively. AAE is defined in Equation 3-
3 where the measured value is the one obtained for FDP while the calculated one is for
FDP-LSS.

n
Z|(Measuredi — Calculated;) / Measured; (3-3)

Average Absolute Error (AAE) = -i=L %100
n
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Figure 3-10. ILLI-PAVE comparisons between FDP-LSS and FDP with no lime.

35



As shown in Figure 3-10(a), while the maximum AAE or difference in deflections can
reach up to 39% for case 2, the total average difference for all deflection values is about
12%. Furthermore, in Figure 3-10(b), the total average differences for gac, esg, and opey are
approximately 18%, 18%, and 35%, respectively. This is in spite of the fact that, the
maximum differences can reach up to 38%, 60%, and 80% for eac, €sg, and opey,
respectively. Therefore, the placement of lime stabilized layer over the untreated subgrade
considerably changed the overall responses of FDPs. Almost up to 40% differences in the
deflection values certainly affect the accuracy of backcalculated layer moduli from the FWD
deflection basins.

3.2.1.2 Conventional Flexible Pavements on Lime Stabilized Soils

To show the additional effect of lime stabilized soil layer on critical pavement
responses and deflection profiles for conventional flexible pavements, preliminary analyses
were also needed. For this purpose, 20 different CFP-LSS sections were analyzed using the
ILLI-PAVE FE program under the typical 9-kip FWD loading. The inputs were selected such
that they included extensive ranges of material properties and thicknesses (see Table 3.4).
The lime-stabilized soil layer was then replaced with natural subgrade and the analyses
were repeated. This way, CFP and CFP-LSS critical pavement responses could be
compared effectively. The deflection profiles and critical pavement responses from the
preliminary analyses are compared again using the computed average absolute errors
(AAE), defined in Equation 3-3 where the measured value is the one obtained for CFP while
the calculated one is for CFP-LSS.

The results are presented in Figures 3-11(a) and (b). The maximum AAE in
deflection values (see Figure 3-11a) is observed to be 33% (Case 6) and the average of all
deflection AAE values is calculated as 9%. The comparisons of critical pavement response,
however, indicated higher variations. While the maximum AAE values for gac, €sg, and opgy
can reach up to 14% (Case 6), 71% (Case 19) and 49% (Case 19), respectively, the
average AAE values are calculated as 4%, 37% and 16%, for eac, €sg, and opgy, respectively
(see Figure 3-11b). Hence, accurate pavement responses could not be computed by
neglecting the contribution of the LSS layer.
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Table 3.4. Ranges of CFP-LSS Material Properties Used in The Preliminary Analyses

Case tAC tGB ths EAC KGB ELSS ERi SenSItIVIty
Number | (in.) | (in.) | (in.) (psi) (psi) (psi) (psi) Variable
1 9 13 4 | 1.0x10% | 75x10° | 1.5x10* | 1.0x10° Eri

2 9 13 | 22 | 1.0x10%° | 75x10% | 1.0x10% | 1.4 x 10*
3 9 13 | 22 | 1.0x10% | 75x10% | 1.5x10* | 1.0x10°
4 9 13 4 | 1.0x10% | 75x10% | 1.0x10% | 1.4 x10*
5 9 13 4 | 1.0x10% | 3.0x10% | 1.5x10* | 7.5x10° Kas
6 9 13 | 22 | 1.0x10%° | 1.2x10* | 1.0x10% | 7.5x 10°
7 9 13 | 22 | 1.0x10° | 3.0x10% | 1.5x10* | 7.5x 10°
8 9 13 4 | 1.0x10%° | 1.2x10* | 1.0x10° | 7.5x 10°
9 9 13 4 | 1.0x10° | 7.5x10% | 1.5x10* | 7.5x10° Eac
10 9 13 | 22 | 20x10%° | 75x10% | 1.0x10° | 7.5x 10°
11 9 13 | 22 | 1.0x10° | 75x10% | 1.5x10* | 7.5x 10°
12 9 13 4 | 20x10%° | 75x10% | 1.0x10° | 7.5x10°
13 9 4 4 | 1.0x10% | 75x10% | 1.5x10* | 7.5x 10° tos
14 9 22 | 22 | 1.0x10%° | 75x10% | 1.0x10% | 7.5x 10°
15 9 4 22 | 1.0x10% | 7.5x10% | 1.5x10* | 7.5x 103
16 9 22 4 | 1.0x10% | 75x10% | 1.0x10% | 7.5x 10°
17 3 13 4 | 1.0x10% | 75x10% | 1.5x10* | 7.5x 10° tac
18 15 13 | 22 | 1.0x10% | 75x10% | 1.0x10% | 7.5x 10°
19 3 13 | 22 | 1.0x10° | 75x10% | 1.5x10* | 7.5x 10°
20 15 13 4 | 1.0x10%° | 7.5x10% | 1.0x10° | 7.5x10°
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Figure 3-11. ILLI-PAVE Comparisons between CFP-LSS and CFP with no lime.
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3.3 ILLI-PAVE DATABASE FOR FLEXIBLE PAVEMENTS

Randomly selected combinations of material and thickness inputs were provided to
ILLI-PAVE to generate batch analyses. For this purpose, a M.S. Excel file was created for a
given pavement to list in it the thickness of asphalt concrete (tac), thickness of unbound
aggregate base (tgg), modulus of AC layer (Eac), K parameter for granular base model (Kgg),
and the breakpoint deviator stress (Eg)) for fine grained soil randomly chosen in the
predefined ranges of properties for Conventional Flexible Pavements (see Figure 3-12). A
batch program interface was written in Borland Delphi (see Figure 3-13) capable of
producing ILLI-PAVE input files with the material and thickness properties obtained from the
corresponding M.S. Excel file. This software mainly duplicates ILLI-PAVE preprocessor
which was written using M.S. Visual Basic and is available to the researchers. By using this
new software program, named ILLI-PAVE auto analysis, numerous runs were made to cover
the whole ranges of layer moduli and thicknesses as illustrated in Figure 3-14. Also
developed using Borland Delphi, ILLI-PAVE auto analysis completely replaces the analysis
engine embedded in ILLI-PAVE 2005 and is capable of extracting the deflections and critical
pavement responses from the analyses to form a database consisting of inputs and outputs
of the flexible pavement analyses (see Figure 3-15). This database, which inherently
captured the nonlinear FE approximations, was then used to train and develop an ANN-
based structural analysis toolbox containing several ANN models for forward and
backcalculation analyses of flexible pavements.
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Figure 3-12. Randomly selected inputs shown in an M.S. Excel file for ILLI-PAVE analyses.
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Figure 3-13. ILLI-PAVE input data generator.
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Figure 3-14. ILLI-PAVE auto analysis engine.
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Figure 3-15. Sample M.S. Excel database used to train ANN models.

The input files for ILLI-PAVE FE analyses were generated by randomly selecting
values for each of the thickness and moduli combinations for different types of flexible
pavements. A total of 24,000 ILLI-PAVE runs were made for FDP and 24,100 for CFP in
order to fully cover the material property ranges given in Tables 3.5 and 3.6. The surface
deflections corresponding to the locations of the FWD sensors and the critical pavement
responses, i.e., horizontal strain at the bottom of AC layer (eac), vertical strain at the top of
the subgrade (esg), and the deviator stress on top of the subgrade (opey), directly at the
centerline of the FWD loading were then extracted from the ILLI-PAVE output files.

Table 3.5. Geometries and Material Properties of Full-Depth Flexible Pavements Analyzed

Material Elasticity
Material Type Thickness (in.) Modulus Poisson’s Ratio
Model :
(ksi)
Asphalt Concrete Linear
(AC) 5-24 Elastic 100 — 2 000 0.35
Fine Grained Nonlinear

Subgrade (SG) (300-tac) | Bjlinear Model | 114 0.45
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Table 3.6. Geometries and Material Properties of Conventional Flexible Pavements

Analyzed
Material Elasticity
Material Type Thickness (in.) Modulus Poisson’s Ratio
Model :
(ksi)
Asphalt Concrete Linear
(AC) 5-24 Elastic 100 — 2 000 0.35
0.35 for
Granular Base Nonlinear K= 5 ksi
(GB) 4-22 K-0 model 3-12 0.40 for
K <5 Kksi
Fine Grained Nonlinear
Subgrade (sG) | (300-tac—tes) | piinearmodel | 114 0.45

The preliminary analyses proved that FDP-LSS pavements had to be analyzed
separately to consider the contribution of lime stabilization and capture more accurate
pavement responses for forward and backcalculation purposes. Sufficiently wide ranges of
material and geometry properties of flexible pavements on LSS were analyzed to form a
database for training ANNs to model the complex and nonlinear relations between the
pavement properties and the responses. Table 3.7 lists the typical ranges of FDP-LSS
pavement geometries and material properties selected to represent field conditions for
establishing the ANN database. Totally 26,000 ILLI-PAVE analyses were performed to fully
capture the ranges defined in Table 3-6. To make sure that ANN models had the ability to
perform correctly for representative field conditions, the ranges of layer thickness values and
material property inputs were extended up to +20% beyond the actual field values. It was
also guaranteed that training was done properly and poor performances of ANN models in
the ranges of typical field conditions and thicknesses were prevented.

Table 3.7. Geometries and Material Properties of Full-Depth Flexible Pavements on Lime
Stabilized Soils Analyzed

. . Elasticity . ,
Material Thickness (in.) Material Modulus Pmssgn s
Type Model . Ratio
(ksi)
Asphalt Linear
Concrete 4-24 Elastic 100 -2 500 0.35
(AC)
Lime
Stabilized Linear
Subgrade 4-20 Elastic 16-150 0.31
(LSS)
Fine-grained Nonlinear
Subgrade (300- tac - tiss) Bilinear 1-15 0.45
(SG) Model

The reported differences from preliminary analyses also confirmed that accuracy of
FWD based backcalculated results for CFP-LSS could be improved when properly taking

42



into account the LSS layer in the analyses. Therefore, CFP-LSS sections were analyzed
under FWD loading with extensive ranges of material and geometry properties to develop an
ILLI-PAVE finite element database. Critical pavement responses and deflection profiles
were stored along with corresponding inputs. Typical ranges of CFP-LSS pavement
geometries and material properties are given in Table 3.8. A total of 30,000 analyses were
carried out with ILLI-PAVE to form the database. This database was also used for training of
ANN models for the inverse pavement analysis or backcalculation.

Table 3.8. Geometries and Material Properties of Conventional Flexible Pavements on
Lime Stabilized Soils Analyzed

Material Thickness Material Layer Modulus Poisson’s Ratio
Type (in.) Model Inputs (ksi)
Asphalt Linear
Concrete 3-18 Elastic 100 — 2 500 0.35
(AC)
Granular 4-29 Nonlinear 3-16 0.35 for K= 5 ksi
Base (GB) K-6 model 0.40 for K <5 ksi
Lime
Stabilized Linear
Subgrade 4-20 Elastic 16-150 0.31
(LSS)
Fine-grained Nonlinear
Su(bs?éa;de (30(_)}%)‘ tes | pBilinear 1-15 0.45
LSS Model

3.4 ANN STRUCTURAL MODELS

The multi-layered, feed-forward backpropagation type neural networks are mainly
implemented for complex valued network level problems. In this project, backpropagation
type ANNs were trained for the backcalculation of pavement layer moduli using the
previously developed database with the input and output variables. Trained ANN models
were tested based on an independent dataset within the ranges that they were trained.
Approximately 1000 runs of all the datasets were independently and randomly chosen
considering the given ranges of material and geometry properties and used as the testing
datasets for the verification of proper ANN learning. The remaining ILLI-PAVE runs in the
datasets were used for the training and/or learning task. The trained ANN models to
determine whether or not they were capable of producing the same database results (with
the given inputs to obtain outputs or vice versa) were checked quickly in this manner.
Although training of each ANN model required a long computation time, with the already set
weighted connections, testing was much faster (on the order of micro seconds). This
advantage allows a field engineer to use trained ANN models as quick pavement analysis
tools without the need for any complex inputs.

3.4.1. Forward Analysis Models

There are total of six ANN models designed to compute the responses of flexible
pavements under a typical FWD loading. Two of them were developed for FDP and CFP
pavements using the different geometries and layer properties. Although the input variables
of these models are different by its nature, the outputs are the same for FDP-FW1 and CFP-

43



FW1 and they are given in Table 3-8. Both models were developed to predict the surface
deflection values Dy, D15, D24, and D3 as well as critical pavement responses, i.e., eac, €sa,
opey. In addition, for both models, the ANN architectures were chosen to have two hidden
layers with 60 neurons in each layer. This was according to the findings from similar ANN
trainings performed by Ceylan et al. (2005). Finally, the ANN models were trained for 10,000
epochs.

Similar to FDP-FW1 and CFP-FW1, two different ANN models were developed to
calculate the responses of FDP-LSS and CFP-LSS pavements using the different
geometries and layer properties. The input and output variables of the ANN models are also
given in Table 3.9. FDP-LSS-FW1 and CFP-LSS-FW1 models were developed to predict the
surface deflection values Dy, D12, D24, and D3 using design thicknesses fac ,tiss and tgs
(see Table 3.9). Since it is often not desirable to have one ANN model to predict several
different outputs at once — the prediction ability of the ANN model is negatively impacted
when nonlinear mapping is done for too many output variables in one model — FDP-LSS-
FW2 and CFP-LSS-FW2 models were also developed to predict this time the critical
pavement responses using the same inputs. For all the models, the ANN architectures were
chosen to have two hidden layers with 20 neurons in each layer. This was according to the
findings from similar ANN trainings performed by Ceylan et al. (2005). The ANN models
were trained for 10,000 epochs.

One of the basic advantages of the developed ANN models is that they do not
require complicated FE inputs that are either difficult or costly to obtain through laboratory
and field characterizations for the analyses of flexible pavements. Yet, the solutions are still
considering the needed sophistication in analysis, such as, the stress dependent subgrade
behavior and the lime-stabilized subgrade layer as an addition layer on top of the natural
unmodified grade, and the realistic layered pavement structure of flexible pavements.

Table 3.9. Forward Artificial Neural Network Models for Flexible Pavements

Type Inputs Outputs
FDP-FW1 t Ero En DO; Di’ DZ;’ Dse,
AC’ “SG, “DEV
CFP-FW1 tor tog Eacr Kog En D?c;\ 5,1?32,23555&
FDE\;\&?S_ tac, tiss: Eacy ELsss Er Do, D12, Da4, D3g
FD,E\;:;ZS S- tac: tLss, Eacs Eiss: Eri €AC) €5G,ODEV
CFE\;\I;ISS- tac tees tiss, Eacs Ko sEisss Er Do, D12, D24, D3s
CF,E\;\ZSS_ tac: teps tiss, Eac: Kas JELss: Eri EAC: £5G,ODEV

3.4.1.1 Performances of the Developed ANN Models
ANN forward calculation models developed for the analyses of flexible pavements
were verified for satisfactory performances using the independent testing data extracted
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from the database of the ILLI-PAVE FE solutions. The performances of ANN models were
indicated by comparing predictions with the ILLI-PAVE FE results using average absolute
error (AAE) values. Figure 3-16 shows the deflections predicted by ANN models at the FWD
geophone locations Dy, D4, Dy4, and D3 to match very accurately with the ILLI-PAVE
results with the given AAE values between 0.2 to 0.5%. The strains (eac and esg) predicted
using ANNs vary on the average by only 2.0% while the subgrade deviator stresses cpev
predicted change on the average by 1.4% from the ILLI-PAVE FE analysis results (see
Figure 3-17).

The results for CFPs are given in Figures 3-18 and 3-19 from the ANN model CFP-
FW1. This model could predict the surface deflection values with an AAE value of at most
0.3%. Similarly, it was also successful in predicting the critical pavement responses eac, €sa,
and opey With AAE values of 0.5%, 0.8%, and 1.8%, respectively. The results proved that
very good agreement was achieved when trying to replace ILLI-PAVE solutions with ANN
predictions.

Figure 3-20 shows the deflection values predicted using the ANN model FDP-LSS-
FW1. Comparisons with ILLI-PAVE results produced AAE values between 0.2 to 0.4% with
a maximum error of 1.4%. Figure 3-21 also indicates that the strains exc and esg predicted
using ANNs vary on the average by only 0.9% and 1.0%, respectively. On the other hand,
the deviator stresses opey predicted on the unmodified subgrade change on the average by
1.5% from the ILLI-PAVE FE analysis results. Even the largest error computed for the
subgrade deviator stress corresponds to within 0.1 psi, which is a negligibly small value for
all practical engineering design applications with the developed ANN models. This is
especially important when considering up to 40% differences in predicted responses
computed earlier between the FDP solutions with and without lime.

The ANN model predictions for CFP-LSS are given in Figures 3-22 and 3-23 for
Models CFP-LSS-FW1 and CFP-LSS-FW2, respectively. Model FW-1 could predict the
surface deflection values with an AAE value of at most 0.4%. For example, this error
accounts for £ 0.05 mils in Do. Similarly, Model FW-2 was successful in predicting the
critical pavement responses eac, esg, and opgy With AAE values of 0.9%, 1.5%, and 1.0%,
respectively. Therefore, these results once again have proven that very good agreement
could be achieved when trying to replace ILLI-PAVE FE solutions with ANN model
predictions. In addition, the developed ANN models eliminated the need for complex FE
inputs that are usually not easy to determine in the laboratory or in the field. Consequently,
these ANN models can be used successfully for practical structural analyses of pavements.
All of the developed ANN forward calculation models were embedded in the Artificial Neural
Network for Professionals software (ANN-Pro v1.0).
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Figure 3-16. Comparisons of ANN structural model predictions with ILLI-PAVE results for
full-depth asphalt pavement surface deflections (in mils).
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Figure 3-17. Comparisons of ANN structural model predictions with ILLI-PAVE results for
full-depth asphalt pavement critical pavement responses
(strains in microstrain and stress in psi).
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conventional flexible pavement surface deflections (in mils).
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Figure 3-19. Comparisons of ANN structural model predictions with ILLI-PAVE results for
conventional flexible pavement critical pavement responses
(strains in microstrain and stress in psi).
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Figure 3-20. Comparisons of ANN structural model predictions with ILLI-PAVE results for
surface deflections (in mils) of full-depth asphalt pavements built on lime stabilized soils.
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Figure 3-21. Comparisons of ANN structural model predictions with ILLI-PAVE critical
pavement responses of full-depth asphalt pavements built on lime stabilized soils
(strains in microstrain and stress in psi).
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Figure 3-22. Comparisons of ANN structural model predictions with ILLI-PAVE results for
surface deflections (in mils) of conventional flexible pavements
built on lime stabilized soils.
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Figure 3-23. Comparisons of ANN structural model predictions with ILLI-PAVE critical
pavement responses of conventional flexible pavements built on lime stabilized soils
(strains in microstrain and stress in psi).
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3.4.2. Backcalculation Models

ANNs are very powerful and versatile computational tools for organizing and
correlating information for certain types of problems in which the complexity and/or
intensiveness of data resources are predominant. As such, ANNs have been used as a new
class of computationally intelligent modeling systems for solving many geotechnical and
transportation soils engineering problems including the pavement layer backcalculation
application (Meier 1995). Yet, pavement structural analysis tools used to train ANN models
were mainly linear elastic and did not account for the realistic stress sensitivity of
geomaterials. Finite element programs with the nonlinear, stress dependent geomaterial
characterization need to be used to generate solution databases for developing ANN-based
structural models. Such uses of ANN models were intended in this section to rapidly and
more accurately backcalculate field or in-service pavement layer properties as well as to
predict critical stress, strain and deformation responses of these pavements in real time from
the measured FWD deflection data.

The ILLI-PAVE database that was explained in the previous section was used here
for training of ANN models in an inverse way. Various backcalculation models were
developed for the rapid estimation of pavement layer properties. Two hidden layers were
used in all ANN models to have adequate nonlinear functional mapping for computing the
pavement responses and moduli of all flexible pavement layers (Ceylan et al. 2005). The
specific ANN models trained and their input and output variables are listed in Tables 3.10
through 3.13. All ANN models had 60 neurons in the hidden layers and were trained for
10,000 epochs. The ANN models were then tested for their prediction abilities using 1,100
independent testing datasets for CFP and 1,000 testing datasets for FDP, FDP-LSS, and
CFP-LSS pavements. The learning rates and the coefficients of momentum were adjusted
and optimized to improve the ANN learning process when needed (Haykin 1999).

FDP-BW1 and CFP-BW1 models predict the layer moduli values from FWD
deflections, as indicated in Tables 3.10 and 3.11, for both CFP and FDP pavements. CFP-
BW2 model was trained to predict Kgg for CFPs with the CFP-BW1 results also used as
inputs in addition to the FWD deflections. FDP-BW2 and CFP-BW3 models were developed
to predict critical pavement responses directly from FWD deflections and layer thicknesses.
In doing so, they can also calculate pavement responses without the need for a structural
analysis model, such as the ILLI-PAVE FE program.

Similarly, FDP-LSS-BW1 model uses the deflection values Dg, D1,, D24, D3 Obtained
from an FWD test and the pavement thicknesses tac and t ss of the FDP-LSS to predict Exc
and Eg at the same time. FDP-LSS-BW2 model takes all inputs and outputs of BW1 and
treats them as additional inputs to predict E ss. In other words, the use of BW2 requires
successful implementation of BW1. After Eac and Eg; are estimated, they are then utilized as
inputs for the BW2 model. Using FDP-LSS-BW3 model, critical pavement responses can be
calculated (Table 3.12).

Finally, there are a total of four ANN models developed for the backcalculation of
CFP-LSS pavement layer properties. In all four ANN models developed, the deflection
values Do, D4z, D24, D3g, Das, Dgg and D7, obtained from FWD testing and the pavement
thicknesses tac, tee, and t.ss were used as inputs. CFP-LSS-BW1 model is used to
backcalculate just the layer moduli Exc and Eg;. CFP-LSS-BW2 model predicts the critical
pavement responses eac, €sg, and opey. These are the first two ANN models to run for a
given problem set. A sequential approach thereby employed computes next the remaining
GB and LSS layer properties such that CFP-LSS-BW3 model uses the critical pavement
responses obtained from the CFP-LSS-BW2 model to determine Kgg. Similarly, CFP-LSS-
BW4 model requires the CFP-LSS-BW3 output Kgg to determine E, ss accurately (Table
3.13). In practice, models 3 and 4 may produce less accurate results since the errors can be
accumulative.
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Table 3.10. Backcalculation ANN Models for Full-Depth Asphalt Pavements

Name Inputs Outputs
FDP-BW1 Do, D12, D2s, Dss, t, Exc Eri
FDP-BW?2 Do, D12, D2s, Dss, t, ac’ €s6,Cpev

Table 3.11. Backcalculation ANN Models for Conventional Flexible Pavements

Name Inputs Outputs
CFP-BW1 Do, D12, D2s, Dss, tac tes Eac: Eri
CFP-BW2 Do, D12,D24, D3g, tac, tes: Eacs Eri Kep
CFP-BW3 Do, D12, D24, D3s, tac, tes EACs €5G,ODEV

Table 3.12. Backcalculation ANN Models for Full-Depth Asphalt Pavements on Lime

Stabilized Soils

Name Inputs Outputs
FDBP\;I\;,ISS_ Do, D12, D24, D3g, tac, tiss Eac, Ery
FDBP\;I\;QSS_ Do, D12, D24, D3s, tac, tiss:Eac: Eri Eiss
FDBP\;\I;?S- Do, D12, D24, Dss, tac, tLss EAC» £5G,ODEV
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Table 3.13. Backcalculation ANN Models for Conventional Flexible Pavements on Lime
Stabilized Soils

Name Inputs Outputs
CFP-LSS-

BW1 Do, D12, D24, D3, tac, tass tiss Eac: Eri
CFP-LSS- Do, D12, D24, Dss, tac, tes, tiss

BW?2 €AC, €3G, ODEV
CFP-LSS- Do, D12, D24, D3g, Dag, Deo, D72, tac, tes, tiss, eac, esas K

BW3 ODEV ee
CFP_LSS_ DO’ D12’ D24’ D36’ D48’ DGO’ D72, tAC! tGBs tLSS’ EACs ER|5 E

BW4 Kes LSS

3.4.2.1 Performances of the Developed ANN Models

The performances of the developed ANN models are illustrated in Figures 3-24 to 3-
31 along with the computed AAE values. Figures 3-24 and 3-26 indicate that the asphalt
concrete moduli of both FDP and CFP pavements were predicted with the lowest AAEs
when compared to those of the base and subgrade nonlinear modulus model parameters.
Usually, Kease was found to be the most difficult to predict, although in this case, the
combined use of CFP-BW1 and CFP-BW2 models worked quite effectively for improving
predictions. All critical pavements responses were also predicted quite successfully with
AAE values less than 6.1% corresponding to very low and almost negligible values of actual
strain and stress magnitudes (see Figures 3-25 and 3-27).

ANN model performances for backcalculated FDP-LSS pavement layer moduli are
given in Figures 3-28(a) to (c). The average absolute errors (AAEs) given indicate that FDP-
LSS-BW1 model could predict ILLI-PAVE solutions within very low 1.3% and 2.1% AAEs for
Eac and Eg;, respectively, while the accuracy of FDP-LSS-BW2 model for the prediction of
ELss remains within a very low AAE of 2.3%. All critical pavement responses were also
predicted quite successfully (see Figure 3-29). The maximum AAE value of 3.2% was
obtained for the subgrade deviator stress and the strain predictions had much lower AAE
values.

Comparisons of CFP-LSS pavement layer moduli predictions with ILLI-PAVE results
are given in Figures 3-30 (a) through (d) with the corresponding AAE values. CFP-LSS-
BW1 model could predict Exc and Eg values in the ILLI-PAVE database within AAE values
of 2.1% and 4.7%, respectively. In addition, AAE values from CFP-LSS-BW2 model are
0.9%, 6.1%, and 4.6% for eac, esa, and opey, respectively (see Figure 3-31). The predictions
of Keg and E,ss layer properties, however, produced slightly higher AAE values of 7.7% and
6.6%, respectively. It was observed that the layer properties that could not be predicted with
high accuracy by CFP-LSS-BW3 and 4 usually belonged to the pavement sections with
extremely thick LSS and GB layers. In practice, however, these pavement geometries are
very rare in lllinois and often not constructed with proper quality control and quality
assurance practices.
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Figure 3-24. Performances of ANN backcalculation models for predicting layer moduli (in
psi) of full-depth asphalt pavements.
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Figure 3-25. Performances of ANN backcalculation models for predicting critical
pavement responses of full-depth asphalt pavements
(strains in microstrain and stress in psi).
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Figure 3-26. Performances of ANN backcalculation models for predicting layer moduli (in
psi) of conventional flexible pavements.
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Figure 3-27. Performances of ANN backcalculation models for predicting critical pavement
responses of conventional flexible pavements (strains in microstrain and stress in psi).
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Figure 3-28. Performances of ANN backcalculation models for predicting layer moduli (in
psi) of full-depth asphalt pavements built on lime stabilized soils.
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Figure 3-29. Performances of ANN backcalculation models for predicting critical pavement
responses of full-depth asphalt pavements built on lime stabilized soils
(strains in microstrain and stress in psi).
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Figure 3-30. Performances of ANN backcalculation models for predicting layer moduli (in
psi) of conventional flexible pavements built on lime stabilized soils.
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Figure 3-31. Performances of ANN backcalculation models for predicting critical pavement
responses of conventional flexible pavements built on lime stabilized soils
(strains in microstrain and stress in psi).

64



3.5 FIELD VALIDATION

The performances of the developed ANN models were deemed to be adequately
verified using the testing datasets by the good comparisons of ANN model predictions with
the ILLI-PAVE results. However, it is always necessary to validate ANN model performances
using actual field data especially when the training database has been created synthetically
such as in this case using the ILLI-PAVE FE analyses. For this purpose, field data were
collected from three highway condition assessment and rehabilitation projects provided by
the lllinois Department of Transportation (IDOT) Bureau of Materials and Physical Research
and used for the performance validations of the developed ANN models. The field data
included both the FWD results as well as the information and test results obtained from
cored pavement sections collected from the FWD locations. Note that most of the full-depth
asphalt pavement sections in lllinois are built on lime stabilized soils although a very few
sections also exist that are built on unmodified subgrade.

In addition, two sets of backcalculation algorithms, given below in Equations 3-4 to 3-
7, for Eac and Eg; were chosen from the previous studies and/or current practice and used to
further verify ANN model predictions for comparisons. Equations 3-4 to 3-7, referred to
hereafter as Hill's algorithms (Hill and Thompson 1988), were separately developed with
and without the consideration of existing LSS layers in FDPs. Whereas, equations 3-8 and
3-9, referred to hereafter as Thompson’s algorithms, were developed only for FDPs without
taking into account LSS layers (Thompson 1989). Note that Thompson’s algorithms provide
the set of equations currently in use by IDOT for FDP layer modulus backcalculation. All of
these equations were developed based on ILLI-PAVE solutions and the statistical
regression analyses of the field collected data, FWD test results with standard 9-kip loading,
with a minimum correlation coefficient R? of 0.98 reported in the literature. In these
equations, no temperature correction was included in backcalculation to account for different
field pavement temperatures based on seasonal and daily temperature fluctuations.

Hill’'s Equations for Lime Stabilized Sections:

lo = 2.824 - - D) Dby 038y P12 ~D36)
O(E ) = 2.824 — 4.08310g(Dg — Dy,) +3.478log(Dg — Dy,) — 0.375log(Dg — Dy ) — 0.382 (3-4)
(D12 — D3g)
log©24) Doy Doy (D12 —Dsgp)
Epj =4671+2374— 2% _8972(—24) 4 33560l09(=24) -1317l0g(Ds4 — Dag) +5.20- 1236/ 3.5
| l0g0s) " Dag Das (D12-Dz) (3-5)
Hill's Equations for No-Lime (unmodified subgrade) Sections:
log(E , ~) = 3.516 — 5.045log(D.. — D.,,) — 0.4791 (Bg ~ Pse) +4.08210g(D, , — D..) +1.237 (Bg ~Pz0) 3-6
og =3.516 - 5.045log(D,, — - 0.4791log .082log - +1.237 —————— -
AC o (Byp = Dyy) o (D15 —Dgg) (3-0)
log(D.
Er; =—136.1+ 1064:%902) 5355 D2 ) 0776100 P22 —58.75l0g(Dy, — Dys) —4.27l0g(Dy, — D) (3-7)
log(Dss) Dy Doy
Thompson’s Equations :
|Og(EAc) =1.846 — 4.902 |Og(DO — DlZ) +5.189 |0g(DO — D24) -1.282 |0g(D12 — D36) (3-8)
2
ERi = 24.7-5.41D36 +0.31D,4 (3-9)

where Exc and Eg; are in ksi and Dg, D1, D24, and D3g are in mils.
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3.5.1 High Cross Road (FA 808)

High Cross Road is located in the southeast corner of the City of Urbana in
Champaign County, lllinois. The pavement cross section from original design consists of 11
in. of hot mix asphalt (HMA) surface on top of 11 in. of LSS. The FWD tests were performed
along highway sections 201 and 201B. The total length of highway mileage for the FWD
data collection was approximately 2.28 miles. The pavement temperature was
approximately 54°F when the FWD tests were performed. Figures 3-32 (a)-(d) show the
backcalculation performances of the ANN models developed for FDP-LSS pavements for
High Cross Road in comparison to the predictions from Hill's and Thompson’s
backcalculation algorithms (Equations 3-4, 3-5, 3-8 and 3-9) for Exc and Eg;.

3.5.2 Roseville Bypass

Roseville Bypass is a connector road to accommodate US-67 traffic. The design
pavement cross section consists of 14 in. of HMA and a 12-in. thick LSS layer. The FWD
tests were performed on part C of the Roseville Bypass, which is a connector road
approximately 300 ft. in length. The pavement temperature was reported as 97°F along the
road during the FWD tests. Figures 3-33 (a)-(d) show the performances of the ANN models
developed for FDP-LSS pavements in comparison to the predictions from Hill's and
Thompson’s backcalculation algorithms (Equations 3-4, 3-5, 3-8 and 3-9) for Eac and Eg;.

3.5.3 Staley Road

Staley Road runs in north-south direction and is located on the west end of the City
of Champaign in Champaign County, lllinois. The design pavement cross section consists
of 12 in. of HMA constructed on LSS with a thickness of 12 in. The FWD tests were
performed along a 2-mile stretch of highway. The pavement temperature was reported as
75°F along the road on the day of FWD tests. Figures 3-34 (a)-(d) show the performances
of the ANN models developed for FDP-LSS pavements for Staley road in comparison to the
predictions from Hill's and Thompson’s backcalculation algorithms (Equations 3-4, 3-5, 3-8
and 3-9) for Exc and Er..

3.5.4 US 50 (FAP 327, old FA 409)

US 50 is located in both St. Clair County and Clinton County in lllinois. The design
pavement section is 9.5 in. of HMA built on unmodified subgrade. The FWD data belonging
to test section K in St. Clair County and section M2 in Clinton County were analyzed. The
pavement temperature was reported to be 95°F for both sections on the day of FWD tests.
Figures 3-35 (a)-(d) show the performances of the ANN models developed for FDP
pavements in comparison to the predictions from Hill's and Thompson’s backcalculation
algorithms (Equations 3-6, 3-7, 3-8 and 3-9) for Exc and Eg..

3.5.5 US 20 (FAP 301, old FA 401)

US 20 is located in Stephenson County in lllinois. The design pavement section is
13 in. of HMA built on unmodified subgrade. The FWD tests were performed on both
sections A and B, which are approximately 200 ft. in length. The pavement temperature was
reported to be 99°F for both sections on the day of FWD tests. Figures 3-36 (a)-(d) show the
performances of the ANN models developed for FDP pavements in comparison to the
predictions from Hill's and Thompson’s backcalculation algorithms (Equations 3-6, 3-7, 3-8
and 3-9) for Exc and Er..
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Figure 3-32. Performances of FDP-LSS ANN models for High Cross Road.
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Figure 3-35. Performances of FDP ANN models for US 50.
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Figure 3-36. Performances of FDP ANN models for US 20.

For all the field validation performances shown in Figures 3-32 to 3-34, ANN-LSS
models captured the AC moduli of FDP-LSS pavements practically the same with both Hill's
and Thompson’s algorithms. This is possibly due to the fact the effect of LSS is mostly
pronounced in the estimation of Eg; and the AC layer moduli are not affected significantly by
the presence of the LSS layer. However, Hill's equations, developed for the FDP-LSS
pavements, produced overall better and more comparable estimates with the ANN models.
This was clearly indicated as Hill’'s Eg; predictions were better centered on the 45-degree
equality line with the ANN predictions whereas Eg; values predicted by Thompson’s
algorithms were in general much lower in magnitude than the ANN results. A possible
explanation of this is linked to the nonlinear stress dependent modulus behavior of the fine-
grained subgrade soils as shown in Figure 3-4. As the wheel load deviator stresses become
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lower under the LSS layer, typically higher moduli are predicted for the untreated subgrade
layer by the ANN models in comparison to those estimated by Thompson’s algorithm.

The field validation performances for FDPs are shown in Figures 3-35 to 3-36.
Similar to FDP-LSS, ANN models developed for FDPs captured the AC moduli practically
the same with both Hill's and Thompson’s algorithms. Hill's equations, developed for the
estimation of Eg; of FDPs, produced overall better and more comparable estimates with the
ANN models. This was clearly indicated as Hill's Er; predictions were better centered on the
45-degree equality line with the ANN estimates whereas Eg; values predicted by
Thompson’s algorithms were in general much lower in magnitude than the ANN results.

Some of the variability in the presented data can also be attributed to variations in
the actual constructed thicknesses of both HMA and LSS layers. Not all the field pavement
thicknesses were verified with collected pavement cores. To overcome this difficulty in the
future, field thicknesses should be determined at the FWD locations. Alternatively,
sensitivities of the backcalculation models to imprecise layer thicknesses should be better
assessed and possibly made more robust.

3.5.6 Sand Pit Road (Henry County)

Sand Pit Road was one of the very few CFP sections that were analyzed among all
other FWD data. The design pavement section is 3.5 in. of HMA and 16 in. of granular base
built on unmodified subgrade. Pavement temperatures show large variations throughout the
road, changing from 63°F to 88°F on the day of FWD tests. Figures 3-37 (a)-(b) show the
performances of the developed ANN models for backcalculating Exc and Eg; layer properties
of CFPs in Henry County, lllinois in comparison to the Thompson’s algorithm predictions
given in Equations 3-10 and 3-11 (Thompson 1989) . In addition, Kgg estimation along the
road is given in Figure 3-37 (c).

Thompson’s Equations :

log(Exc) =1.31+ 801202 130212 , 5825 0.081D, + 0.096D,, (3-10)
DO D24 D24
Egy = 24.7—5.08D3q + 0.28 D4 (3-11)
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Figure 3-37. Performances CFP ANN models for Sand Pit Road.

3.5.7 ATREL Test Sections
In an attempt to further verify ANN structural models developed for flexible

pavements in this study, FWD tests were performed at the University of lllinois Advanced
Transportation Research and Engineering Laboratory (ATREL) pavement test sections. The
plan views and cross section details of the test sections are given in Figures 3-38(a) and (b).
FWD tests were conducted on test sections A, D, and F shown in Figure 3-38. The
pavement temperature was reported to be between 80 to 85°F on the day of FWD tests.
Since most of the rather high deformations obtained from FWD testing on section F are
beyond the limits of ANN structural models, section F FWD results could not be utilized.
Figure 3-39 (a)-(d) show the performances of the developed FDP-LSS ANN models for
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ATREL sections A and D pavements in comparison to the predictions from Hill's and
Thompson’s backcalculation algorithms (Equations 3-5, 3-6, 3-8 and 3-9) for Eac and Eg;.
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Figure 3-38. ATREL test sections.
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Figure 3-39. Performances of FDP-LSS ANN models for ATREL.

For all the field validation performances shown in Figures 3-39 (a)-(d), the FDP-LSS
ANN models predicted the AC moduli in good agreement with both Hil’'s and Thompson’s
algorithms. However, both Hill's equations and Thompson’s equations produce much higher
estimations for Eg;, since the normalized D35 values were very small numbers. Indeed, these
values were beyond the ANN training ranges, i.e., ANNs hit the upper bound (limit for ANN
training) for the prediction of Eg;. A further attempt to calculate lime stabilized soil layer
modulus was therefore not tried.
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CHAPTER 4: SOFT COMPUTING BASED SYSTEM ANALYZER:
SOFTSYS

4.1 INTRODUCTION

A typical pavement structure, as shown in Figure 4-1, can be identified using four
different properties listed below (Selezneva et al. 2002). These properties need to be
determined in order to have an overall pavement rehabilitation strategy:

* Layer descriptions (e.g., surface, overlay, base, and subgrade);

* Material type descriptions of pavement layers;

* Layer thicknesses;

* Layer thickness variability.

-
Layer
Description

4- , o

i_—téﬁw-w“‘r = mz.nw/\-—-ﬁ:—-!'

Figure 4-1. Typical pavement system parameters to be determined.

In the previous chapter of this report it was proven that properly trained artificial
neural network (ANN) models as computational intelligence or soft computing tools are
capable of backcalculating flexible pavement layer moduli and predicting pavement critical
responses with average errors much smaller than those obtained with the statistically
formulated algorithms currently in use by lllinois DOT. The nonlinear ILLI-PAVE FE program,
an extensively tested and validated flexible pavement mechanistic analysis program for over
the past three decades, has been used as the primary analysis tool for the solution of full
depth and conventional flexible pavement responses under the standard 9-kip FWD loading.
ANN models then trained with the results of the ILLI-PAVE solutions have been found to be
viable alternatives to backcalculate the pavement layer moduli and predict the critical
pavement responses based on the FWD deflection data. This demonstrated a significant
level of improvement in the nondestructive FWD test data interpretations. The developed
ANN models were validated to provide more accurate and rapid (real-time) analyses of the

76



collected FWD deflection data, however, these ANN models require that FWD results be
provided along with pavement layer thicknesses.

In this chapter, an innovative methodology, called SOFTSYS, is introduced for
interpreting the results of a FWD test. It is a computational method to describe the properties
of pavement layers. Among those, the layer thickness plays the crucial role in determining
the remaining life since it is a major factor contributing to structural adequacy of the
pavement. The outstanding contribution of SOFTSYS is that it is able to estimate the
pavement layer thicknesses reliably in addition to their stiffness properties. Using only FWD
test results (i.e. deflections) as inputs, SOFTSYS calculates all the necessary properties for
pavement evaluation. To do this, SOFTSYS uses a combination of nontraditional computing
tools, such as Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs). Using quick
and robust algorithms in SOFTSYS, real time evaluation of the pavements becomes feasible
to also verify as-constructed pavement design parameters in the field.

4.2 OBJECTIVE

Knowing pavement layer thicknesses is critical to predicting pavement performance,
establishing pavement load carrying capacity and developing pavement maintenance and
rehabilitation strategies. Accurate determination of pavement layer thicknesses usually
requires proper sampling from the pavement section (through the use of destructive testing).
This is usually not preferred since it prevents functionality of a pavement and disrupts traffic.
Moreover, thickness measurements obtained from only a few extracted cores may not
always represent adequately the thickness profile. It is important to ensure that the
thickness of materials being placed by the contractor is acceptably close to specifications
(Sener et al. 1998).

The layer thickness information, a key structural design input, is mainly required for
many types of analyses including backcalculation of pavement moduli, mechanistic analysis
of pavement structures, and performance modeling. Due to poor workmanship and/or
limitations of construction equipment used to build roads, construction quality of pavements
may not be at a desired level. This might cause the thickness constructed on site to be
considerably different than the designed thickness. Furthermore, in many cases, the lack of
proper design documentation for existing roads makes it extremely difficult to rehabilitate
certain pavements without the knowledge of pavement layer thicknesses. Insufficient
knowledge of layer thicknesses during pavement response testing is therefore often a major
limitation in pavement condition assessment.

The current methods to determine the thickness usually require coring of pavement
or using some advanced nondestructive testing equipment such as Ground Penetrating
Radar (GPR). These techniques are rather expensive or may result in destruction of
pavement layer profile. On the other hand, if FWD tests are conducted, for example, in 5 ft
intervals of the road section, in which the abrupt change in the thickness is not expected, the
thickness profile along the pavement section can be determined with reasonably good
accuracy and in real time.

To address the current challenges, SOFTSYS is developed to perform the following
task in real time as part of conducting FWD tests:

e Determination of pavement thickness
e Estimation of pavement moduli
* |dentifying pavement parameters such as poison’s ratio
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4.3 BASICS OF SOFTSYS

SOFTSYS interprets FWD test results and performs pavement structural analysis
based on the Finite Element Method (FEM). FEM provides modeling of pavement structure
due to applied wheel loading to compute pavement deflections. Unlike the linear elastic
theory commonly used in pavement analysis, nonlinear unbound aggregate base, and
subgrade soil characterization models are used in the FEM. This accounts for the typical
hardening behavior of unbound aggregate bases and softening nature of fine-grained
subgrade soils under increasing stress states. The results of the nonlinear finite element
approach have been proven to be consistent with the deflections obtained from NDT of
pavements. Since FEM internally captures the nonlinear material properties to simulate the
real pavement behavior, SOFTSYS, therefore, has an inherent capability of incorporating
the nonlinear properties of aggregate and soil layers underneath pavements.

The implementation of soft computing methods is the next stage in the algorithm.
The convergence of SOFTSYS when used with only FEM is quite slow. Therefore, FEM is
replaced by ANNs since they work much faster and can still perform similar higher order
function approximations as FEM. In addition, when ANNs are properly trained, they can
tolerate errors that FWD tests might involve. This has been a major limitation with the
classical approaches developed for interpretation of the test results. SOFTSYS, in addition,
reliably implements GAs to feed inputs into ANN models. GAs are search algorithms for the
optimum or maximum of complex objective functions (Goldberg 1989; Goldberg 2002). They
contribute to the speed and robustness of SOFTSYS by performing fitness based search.

In conclusion, SOFTSYS features high reliability and advanced technology for
predicting repeatable results in a quick and robust fashion to enable practical engineering
interpretations of FWD test data essentially needed for nondestructive evaluation of
pavements.

4.3.1 SOFTSYS Methodology and Algorithm

SOFTSYS is a computational methodology based on novel artificial intelligence
techniques to backcalculate thickness and stiffness properties of the pavement layers. It
also evaluates a pavement’s structural adequacy in real time. It is a hybrid algorithm that
combines three different techniques namely, Genetic Algorithms, Artificial Neural Networks,
and nonlinear Finite Element Method. Each component performs certain tasks in order to
run SOFTSYS at a desirable reliability, accuracy, and speed. SOFTSYS is introduced for the
solution of the pavement backcalculation problem consisting of estimating layer thicknesses
and moduli. It is an algorithm that uses a combination of GAs and ANNs as to guarantee
that the proposed methodology becomes robust, quick, and imprecision tolerant. The
flowchart of SOFTSYS is provided in Figure 4-2.

ANNSs, in SOFTSYS, are used as quick and precise pavement structural analysis
tools for the prediction of pavement deflection profiles. Training of ANNs is accomplished
based on the results of nonlinear finite element analysis of pavements. Any sophisticated
finite element program solution can be implemented in SOFTSYS. For the sake of providing
results, ILLI-PAVE FE software that provides an advanced pavement structural model for
solving deflection profiles and responses was selected. It can analyze any flexible pavement
geometry, i.e., full-depth and conventional flexible pavements, due to an applied static
loading. First, broad range of input parameters of the pavement layers (layer moduli and
thicknesses) are created in a database. Then, randomly selected combinations of the
parameters are inputted into ILLI-PAVE. Analyses are conducted for the simulation of FWD
tests. Multi-layered, feed-forward backpropagation type ANNs (Wythoff 1993) are trained to
capture the nonlinear relationships between the aforementioned input parameters and
output variables (deflections) of ILLI-PAVE. The developed ANN model is ultimately used for
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computing pavement surface deflections based on the known pavement layer moduli and
thicknesses.

GAs are computational models based on natural evolution (Holland 1975). They are
powerful optimization and search methods. GA methodology is highly robust and
imprecision tolerant. A system is represented by binary strings (i.e., genotype), which
encodes the real values of parameters of the system (i.e., phenotype). A population with
initial random parameters is used. Population members get better and better to satisfy the
fitness criteria through number of generations. This is performed using the operators
inspired by the nature such as competition, fithess based selection, crossover, and mutation.
The results are not necessarily exact instead are accurate to a certain degree of
approximation (Ghaboussi 2001).

In SOFTSYS, GAs work for random search with the operators inspired by the natural
evolution. The major components of GAs are; the genotype / phenotype presentation of
parameters of the problem domain (i.e., pavement layer moduli and thicknesses), fitness
evaluation (mathematical expression as a measure of the difference between the surface
deflections obtained by the FWD test and the ones calculated from ANN model), selection
scheme, crossover method, and mutation. A collection of input parameters within a
reasonable range are created randomly to have the database of all possible combinations of
pavement layer material properties including material moduli and thickness encountered in
the pavement. These are then fed into the ANN model as testing data set to compute the
corresponding deflection profiles. The testing of all data sets created by GAs is done within
a second, which is quite insensitive to number of testing data. GAs, then, sort input data set
based on the imposed fitness function calculated using the outputs of ANN results and the
deflection profile obtained by FWD testing. Natural evolution operators; selection, crossover,
and mutation are then applied to the so called parents and to their offspring to establish the
most satisfactory data set for the surface profile obtained from FWD. Finally, an iterative
algorithm called “fine tuner” implemented into SOFTSYS has been intended to improve the
precision of the obtained results.
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Figure 4-2. SOFTSYS algorithm.
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4.3.2 SOFTSYS Description
In this section, SOFTSYS algorithm is explained step by step for practical purposes.
Each step is described in detail to describe how robust solutions are obtained in SOFTSYS.

4.3.2.1 Inputting FWD Data
When Falling Weight Deflectometer (FWD) tests with 9-kip loading are conducted on
any road section, the deflections obtained from the FWD testing on that typical road section
are entered as an input file into the system.
Computer Implementation:
* For real time applications, input the deflection values (D0, D12, D24, D36, D48,
D60, D72 - the last four values are optional);
* For offline analyses (after the whole test is carried on each station of the road),
an input file is generated consisting of the deflection values for each station);
* |n addition to FWD deflections, the conditions of the road (i.e., any comment of
the technician, description of any observed crack, joint, etc.) and weather
information (i.e., temperature) needs to be entered into the system.

4.3.2.2 Entering Pavement Type and Model

Based on the pavement type (Full-Depth Asphalt Pavement, Full Depth Asphalt
Pavement on Lime Stabilized Soils, etc.) parameters to be modeled in SOFTSYS are
entered.

Computer Implementation:

* Query for type of the pavement;

* Full-Depth Asphalt Pavement (FDP) or Full-Depth Asphalt Pavement on Lime
Stabilized Soils (FDP-LSS) (there is going to be more categories of pavements
as the ANN analyses show good progress);

* Based on the pavement category selected, the corresponding ANN structural
model has to be introduced to the system. The ANN model parameters (so called
phenotypes for genetic algorithms), given in Table 4.1, are extracted from the
selected model and shown on the screen.

4.3.2.3 Population Creation

Random population of phenotypes, i.e., AC modulus & thickness (tac, Eac), lime
stabilized layer modulus & thickness (t.ss, Eiss), and subgrade soil modulus (Eg)) are
created at this stage.

The user is queried for the ranges, i.e., maximum and minimum values, of
phenotypes. The number of bits necessary to represent the phenotype is found using the
maximum value of the phenotype. A uniform random number generator is then used to
create the population of phenotypes.

Computer implementation:

* Enter the maximum number of generations for analysis;

* Enter the population size (recommended value is 60);

* Enter the maximum and minimum values of the phenotypes;

* Determine the number of bits to represent the phenotype and to encode it into
genotype;

* Keep the number of bits the same for the rest of the calculations.
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4.3.2.4 lteration Initiation
Iterations are initiated by setting the iteration, i.e., Generation, to 0
Computer Implementation:
* Set the generation number to 0.

4.3.2.5 Running ANN Forward Analysis
The trained ANN model is run with the randomly created Phenotypes as inputs.
Computer Implementation:
* Normalize the phenotypes to the range specified by the already developed

model (for example, normalize the inputs to [-1, 1] and outputs to [0.1, 0.9]);
* Run the ANN program with number of training data sets to 0 and that of testing
data is the population size.

The results of ANN model runs are then obtained and the deflection values are
unnormalized to ranges of the developed file and reported.

4.3.2.6 Fitness Evaluation of Population
The fitness of each member is calculated using the fitness function.
Computer Implementation:
* Depending on the number of FWD outputs (typically 4 - DO, D12, D24, and D36),

the fithness of each member is calculated using the following formula given in
Equation 4-1;
* Fitness vector is then formed for the whole population.

Fitness = L (4-1)
L (B*(FWD,; — ANN, ))“
1+ z
£ FWD,

where o and B are 2 and 100, respectively.

4.3.2.7 Checking Termination Criterion
This stage is where termination of SOFTSYS algorithm is checked against several
different criteria. If Generation is less than the maximum number of generations or the
fitness is less than 1 (for practical purposes, it is specified less than 0.9999), then the
algorithm needs to be run for at least one more generation.
Computer Implementation:
* If the generation number is greater than the maximum number of generations or
the value of any of the members of the population in the fithess vector is equal to
1 (or specified by the user such as 0.95), then stop running SOFTSYS and report
the member with the highest fitness, fitness value, and the generation number on
the screen and to a file.

* Otherwise go to the next stage.

4.3.2.8 Encoding Variables
The variables are converted, i.e., encoded, from Phenotypes into Genotypes (bit
String Representation) using bit, i.e. base 2, conversion.
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4.3.2.9 Selection of Child Genotypes
Parents are combined to form Child Genotypes
Computer Implementation:
* Query the user for which selection algorithm to be used;
* Implement the corresponding algorithm;
e According the specified selection algorithm, such as the roulette wheel or
tournament selection, select the new parents to create the offsprings;
* The parents are then paired in order, i.e., 1-2, 3-4, etc.

4.3.2.10 Crossover and Mutation of Variables
Do crossover and mutation over child genotypes.

The user is queried to enter the rates of crossover and mutation (also known as
probability of crossover and mutation).

a) Crossover
Previously paired parents are then combined to produce the offspring. This is done

through crossover operators. Each pair produces two offspring after the application of these
operators.

b) Mutation

Mutation is simply replacing some genes (i.e. bits) of the chromosome by its logical
complement.

Computer Implementation:
* Ask the user for probability of mutation and crossover;

* Implement corresponding crossover and mutation algorithms explained in
Chapter 2.

4.3.2.11 Decoding of Genotypes
After the crossover and mutation have been performed, the offspring genotypes are

converted into phenotypes based on the number of bits each variable presents through log
10 conversions.

One generation cycle is completed at the end of these operations. The program is
run based on the specified number of generations, or until the satisfying criteria is reached.
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4.4 SOFTSYS MODELS FOR FULL-DEPTH ASPHALT PAVEMENTS

There are two main backcalculation models developed for SOFTSYS. These are
provided in Table 4.1. The first one, FDP-M1, predicts E,c and Eg, with the use of
information obtained from FWD (Do, D12, D24, D3g) in addition to design thickness of FDP. On
the other hand, the second model, FDP-M2, uses deflection information without the need of
thickness entry. This model predicts the thickness using FWD deflections only. Both models
use the same forward ANN structural model (FWD-FW1), which replaces ILLI-PAVE
successfully (the performance of the corresponding ANN model was provided in the
previous chapter).

Table 4.1. Parameters (Phenotypes) for Different Types of Pavement Models

Model Name Inputs Outputs
FDP'NH DO; D12! D24; D36! tAC EAC: ERI
FDP'M2 DO: D12: D24: D36 tAC; EAC, ERI

4.4.1 Performances of Developed SOFTSYS Models

The performances of SOFTSYS models were measured using the synthetic FWD
data. For this purpose, 20 stations were selected randomly from the database, created by
using the ILLI-PAVE database previously obtained for training ANNs to analyze FDPs. It
was named as IP-SYNTH (stands for synthetic ILLI-PAVE) FWD database. IP-SYNTH was
analyzed using SOFTSYS models.

Figures 4-3(a) and (b) provide the performance summaries of SOFTSYS FDP-M1
model for predicting pavement layer moduli. The values of correlation coefficients (R?)
being very close to 1 indicate that pavement layer moduli were predicted quite successfully
using FDP-M1. In addition, the progress curves of this SOFTSYS model estimations are
given in Figures 4-4(a) to (c) for stations randomly selected from IP-SYNTH FWD database.
These curves simply represent the growth of member fithesses of the population through
generations. Best fitness (B.F.) values also reported on the progress graphs to show that
deflection profile obtained using that member of the population is in conformity with the one
in the FWD database. Finally, the growths of the average fithess of the all population
members are shown along with the fittest (maximum fitness) and the least fit members
(minimum fitness) in the population. All these progress curves are presented to show that
no premature convergence was reached during the analyses (Goldberg 1989).

The performance summaries of SOFTSYS FDP-M2 model for predicting pavement
layer moduli along with the thicknesses are given in Figures 4-5(a) to (c). The values of
correlation coefficients (R?) being very close to “1” for Eg;indicate that SOFTSYS FDP-M2
worked very effectively to predict breakpoint resilient modulus of the subgrade layer.
SOFTSYS was also able to capture the thickness successfully with a correlation coefficient
of 0.9791. The prediction of Exc by SOFTSYS produced slightly lower correlation
coefficients compared to those reported for the other pavement properties. The best fitness
values obtained from FDP-M2 predictions [see Figures 4-6(a) to (c)] for randomly selected
stations from the IP-SYNTH FWD database are lower than those of FDP-M1. This is
because it is generally much more difficult to predict thicknesses along with the pavement
layer moduli.
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Figure 4-3. SOFTSYS FDP-M1 predictions.
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Figure 4-4. Progress curves of SOFTSYS FDP-M1 for randomly selected stations.
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4.5. FIELD VALIDATION

45.1. Staley Road

The promising preliminary results obtained with the SOFTSYS approach gave high
R? values of about 0.97 (equivalent to average absolute error, AAE, values on the order of
6%) for predicting asphalt concrete layer thickness. These results, however, had to be
validated with actual field data because the FWD database used in testing the SOFTSYS
performance was obtained synthetically. For this purpose, FWD data were collected from
Staley Road, in Champaign, lllinois and used for the performance validations of the
developed SOFTSYS models. The Staley Road field data included only FWD results along
with the temperature information collected in August of 2002, in warm weather conditions.
There were, however, no cores taken from the pavement sections at the FWD locations.

As stated in the previous chapter, Staley Road runs in a north-south direction and is
located on the west end of the City of Champaign in Champaign County, lllinois [see Figures
4.7(a) and (b)]. The design pavement cross section consists of 12 in. of HMA constructed on
LSS with a thickness of 12 in. The FWD tests were performed on about 1,000 ft. of the
highway stretch. The pavement temperature was approximately 100°F when the FWD tests
were performed. Figure 4-8 shows the locations of FWD testing points along the pavement
section. In this figure, the locations of metal plates on the road and reference points are also
shown for the sake of completeness.

4.5.1.1 GPR testing

GPR technique has been identified as a reliable means to determine thicknesses of
pavement sections in the field. In addition to use of GPR, construction thickness data have
been obtained to determine pavement thicknesses in the field and establish a database to
use in the validation of SOFTSYS pavement thickness predictions. The variability in the field
determined or as-constructed thicknesses as well as other pavement layer properties are
the critical factors in these validation efforts. Therefore, along with performing FWD tests,
GPR testing and field thickness data collection need to be performed on the test sections so
that the thickness variations or changes in the construction quality may be effectively
assessed from the field data.

Two sets of GPR tests were performed along the Staley road in the same locations
where FWD test data were obtained. The details of the GPR tests are provided in Table 4-2.
The first set of GPR tests was performed to obtain the asphalt thickness data from the road,
and the second one was aimed at verifying the first results and increasing reliability. In the
first set of tests, North and South bound lanes of the test section were tested using both
ground and air coupled antennae (see Figure 4.9). In the second set of tests, only air
coupled antenna was used to verify the previously determined asphalt thickness data. The
GPR interpretations for both lanes (right wheel paths) are provided in Figures 4-10 and 4-11.
The 1 GHz air antenna was able to capture the HMA and lime stabilized interfaces. However,
the 2 GHz air antenna was able to verify the HMA thickness, but not the lime stabilized
interface. The interpretation of data collected with the ground coupled antenna did not
produce meaningful results, which may be due to several reasons such as noise, or
moisture on the surface of the pavement.
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Figure 4-7. Location of Staley Road and test sections.
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Figure 4-8. Locations of FWD tests along the Staley Road sections.

Table 4.2. GPR Test Conditions Along Staley Road Pavement Sections

Test 1 Test 2
Section 13+800 => 14+750 13+800 => 14+750
Date November 02, 2008 November 21, 2008
Antenna Used Ground + Air Air
Air Condition Clear (No :Zisr][iggc;ays before Clear (No ;Zi;iggd)ays before

91




Figure 4-9. Air and ground coupled antennae used in GPR testing.
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Figure 4-10. GPR test results: north bound right wheel path.
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4.5.1.2 SOFTSYS Analyses

The data obtained from GPR indicated that the constructed pavement thickness was
generally thicker than the design thickness (by approximately one inch) although there were
sections that were even thinner than the design thickness. The thickness data from the field
were deemed to be essential to calibrate the GPR test results. For this purpose, the
elevation data were obtained from the time when the road was constructed. There were
three observation points identified within the pavement section where FWD tests were
performed. These elevation points were then used to sufficiently compare GPR test results.
Finally, the SOFTSYS predictions were also compared with the thickness data both from
GPR testing and the construction thicknesses to validate the thickness finder portion of the
SOFTSYS program. No temperature correction was included in backcalculation of pavement
layer properties.

Figures 4-12 (a) to (d) provide the thickness estimations of SOFTSYS from the FWD
data together with the thicknesses obtained from both GPR and construction survey data.
The thicknesses obtained using SOFTSYS captured construction data well on the North
lane [see Figure 4-12 (a)]. However, SOFTSYS generally predicted lower thicknesses on the
South lane [see Figure 4.12 (b)]. The SOFTSYS predictions for both Exc and Eg; are also
given in Figures 4-12 (c) and (d), respectively.

In an attempt to further verify the SOFTSYS results, another model was developed to
take into account the LSS layer (named FDP-LSS M2) since Staley road was built on lime
modified soil. The predictions are given in Figures 4-13 (a) to (g). Similar to the ones
obtained from FDP-M2 model, the thicknesses obtained using FDP-LSS M2, were in good
agreement with the construction data on the North lane [see Figure 4-13 (a)]. On the other
hand, SOFTSYS generally predicted lower thicknesses on the South lane [see Figure 4-13
(b)]. The lime stabilized section thicknesses are also given in Figures 4-13 (c) and (d).
Since no information is given on the actual LSS thicknesses, the predictions are given in
comparison to design thicknesses of the LSS layer. SOFTSYS predicted LSS layer
thicknesses with reasonable accuracy. Although the results showed variability, the
thicknesses predicted remained in the range of 10 to 13 in., which are somewhat realistic
considering the typical thickness variability of LSS layers is more than that of HMA. Finally,
the SOFTSYS estimations for Exc, Eiss, and Eg; are also given in Figures 4-13 (e) to (g),
respectively. In general, the variations of AC and LSS layer thicknesses observed were
attributed to the variations of the FWD test data.
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Figure 4-12. Estimation of pavement layer properties using SOFTSYS FDP-M1.
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Figure 4-12. Estimation of pavement layer properties using SOFTSYS FDP-M1 (contd.).
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Figure 4-13. Estimation of pavement layer properties using SOFTSYS FDP-LSS M2.
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Figure 4-13. Estimation of pavement layer properties using SOFTSYS FDP-LSS M2
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Backcalculated Elastic Modulus of Asphalt
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Figure 4-13. Estimation of pavement layer properties using SOFTSYS FDP-LSS M2
(contd.).
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CHAPTER 5: SUMMARY AND CONCLUSIONS

5.1 SUMMARY

Pavement condition assessment in the field conducted by the use of Falling Weight
Deflectometer (FWD) often requires the use of linear elastic pavement layered analysis tools
to backcalculate layer moduli. However, both the subgrade soils and unbound aggregate
base/subbase layers exhibit nonlinear, stress dependent geomaterial behavior.
Sophisticated pavement structural models are needed to perform nonlinear analyses for
more accurate solutions with fast computation schemes. This study focused on the use of
artificial neural network (ANN) pavement structural models developed with the results of the
ILLI-PAVE finite element (FE) program for FWD backcalculation and prediction of pavement
critical responses. In addition, it has also focused on the hybrid use of Genetic Algorithms
(GAs) and ANNs to estimate the pavement layer properties including hot-mix asphalt
concrete (HMA) thickness using only the FWD test data on full-depth asphalt pavements.

First, information was collected on the types, and typical geometries and layer
properties of different flexible pavements existing in the State of lllinois. This information
was crucial for conducting many ILLI-PAVE FE analyses of typical pavement geometries
and layer material properties and creating the synthetic pavement deflection basin data
which represented the response/behavior of lllinois flexible pavements.

Then, the ILLI-PAVE finite element program, extensively tested and validated for
over three decades, was used as an advanced structural model for solving deflection
profiles and responses of the identified typical lllinois flexible pavements including Full-
Depth Asphalt Pavements, Full-Depth Asphalt Pavements on Lime Stabilized Soils,
Conventional Flexible Pavements, and Conventional Flexible Pavements built on Lime
Stabilized Soils. Pavement deflection basins were created by the ILLI-PAVE FE runs under
the standard 9,000-lb FWD loading. Pavement deflection and response databases
established from the ILLI-PAVE FE solutions in this manner covered all combinations of the
different pavement geometries, layer thicknesses, and layer moduli.

Using these databases, both forward and backcalculation types of ANN models were
developed. Different ANN model network architectures were searched and trained to
determine the optimum architectures that best captured the behavior of the lllinois pavement
sections. In each case, a portion of the ANN model training data was separated as an
independent testing set to check the performance of the trained ANN architecture. Several
different network architectures were trained using different number of input parameters.
Some of the network architectures were designed for directly predicting the critical pavement
responses, such as the maximum horizontal tensile strain at the bottom of HMA layer or the
vertical stress/strain on top of subgrade, from the FWD deflection basins. These networks
have been crucial for implementing the mechanistic based pavement design and validating
extended life HMA design concepts.

In an effort to validate ANN backcalculation models, FWD test data already available
at the IDOT Bureau of Materials and Physical Research from previous lllinois Highway
Research (IHR) studies were collected for establishing a comprehensive field FWD
database from pavements in lllinois, with known layer thicknesses and material properties.
Examples of such previous studies with available FWD test data are the High Cross Road,
Roseville Bypass, Staley Road, US 50, US 20, and Sand Pit Road projects. The validation
database established this way from the field FWD data was fully utilized in a comprehensive
effort to validate the ANN models developed for robustness and accuracy in predicting the
pavement layer moduli and critical pavement responses directly from FWD testing. In
addition, results of extensive FWD tests also conducted on the University of lllinois
Advanced Transportation Research and Engineering Laboratory (ATREL) pavement
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sections under ICT-R39 project and on other lllinois in-service pavements by the IDOT
nondestructive evaluation team were also used as the field validation data.

During the development of the ANN models, a professional ANN (ANN-Pro) toolbox
was prepared as user-friendly software with a graphical user interface (GUI) to enable easy
inputting of the FWD deflection data with pavement layer thicknesses and outputting of the
ANN model predictions for forward and backcalculation structural analyses. The toolbox
software was updated in a way that it directly reads the FWD deflection data from the FWD
testing equipment and prints the pavement layer moduli and critical pavement response
predictions in real time as the program output.

In addition, the framework SOFTSYS, which stands for Soft Computing Based
Pavement and Geomaterial System Analyzer, was developed as a new pavement analyzer
by the research team to perform both forward and backcalculation analyses by the hybrid
use of GA and ANN models thus enabling full-depth asphalt pavement analyses without
knowing the HMA layer thickness. Similar to the ANN models, SOFTSYS performance
needed to be validated with the actual field data. Ground Penetrating Radar (GPR) was
selected as the most reliable way of determining layer thicknesses of medium to long
stretches of field pavement sections. In addition, construction thickness data were also
required to determine the thicknesses of in-service pavements. The variability in the
thickness as well as other pavement properties was a critical issue. Therefore, along with
the FWD testing, GPR testing was also conducted to obtain pavement thickness data. The
SOFTSYS thickness predictions were then successfully validated through comparisons with
the GPR test results and pavement section construction thickness data.

5.2 CONCLUSIONS

A suite of ANN models (available in the accompanying ANN-Pro software program)
developed in this study for the analyses of full-depth asphalt and conventional flexible
pavements, built on both natural and lime stabilized subgrades, proved that ANN model
predictions for the backcalculated layer moduli and the critical pavement responses, i.e., the
maximum horizontal tensile strain at the bottom of HMA layer responsible for fatigue and the
vertical stress/strain on top of subgrade responsible for subgrade rutting conditions, were
within very low average absolute errors of those obtained directly from the ILLI-PAVE FE
solutions. Further, the excellent performances of the developed surrogate ANN structural
models (forward models) proved that they could be used in lieu of finite element analyses for
the quick and accurate predictions of the surface deflections and the critical responses of all
types of full-depth and conventional flexible pavements found/constructed in lllinois.

The results of pavement structural modeling with the ILLI-PAVE FE program showed
that improvements due to the constructed lime stabilized subgrade soil layer had to be
captured separately in the analyses since there are significant differences between the
critical pavement responses of full-depth pavements, widely constructed and found as high
volume Interstate highways in lllinois, on unmodified subgrade and lime stabilized subgrade.
Therefore, for correctly modeling the pavement response and behavior with the lime
stabilized subgrade soil layer, separate forward and backcalculation analysis approaches
were developed to accurately predict pavement deflection profiles and pavement critical
responses under FWD loading.

The performances of ANN models developed for lime stabilized sections were
validated with the field FWD data collected from three highway projects in lllinois. In addition,
FWD data collected from other pavement test sections in lllinois, at the University of Illinois
ATREL, and Henry County test site were also used for field validation purposes. Low
average absolute errors obtained when compared to ILLI-PAVE base algorithms currently in
use proved that ANN models could be used reliably to backcalculate layer moduli of flexible
pavements built on both lime stabilized and natural subgrades. When compared with
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regression based backcalculation algorithms for no lime full-depth asphalt pavements, the
developed ANN models justifiably predicted higher subgrade moduli corresponding to much
lower wheel load deviator stresses found under the lime stabilized layer.

In conclusion, ANN models did not require the knowledge of advanced material
property inputs, and therefore, can be effectively used through the implementation of ANN-
Pro software program as quick and reliable backcalculation tools for the nondestructive
evaluation of flexible pavements in lllinois.

Thickness variability was a real issue in the field, and coring was not always an
option to determine layer thickness. The SOFTSYS, Soft Computing Based Pavement and
Geomaterial System Analyzer, framework was developed as another project deliverable
software package to backcalculate layer moduli and predict HMA thicknesses of full-depth
asphalt pavements. SOFTSYS was shown to work effectively with the synthetic data
obtained from ILLI-PAVE FE solutions. The very promising SOFTSYS software results
obtained indicated average absolute errors (AAEs) on the order of 6% for the HMA
thickness estimation.

The field validations of SOFTSYS with Staley Road FWD data also produced
meaningful results. Higher deflection values did correlate well with thinner backcalculated
HMA thicknesses. In addition, the thickness data obtained from GPR testing matched
reasonably well with that of SOFTSYS results although in some locations the maximum
difference between the two results was up to 3 in. The variations of HMA and lime stabilized
soil layer thicknesses observed were attributed to variations of FWD data. The data
obtained from GPR indicated that the constructed HMA thicknesses were generally greater
than the design thickness (by approximately 1 in.) although there were sections that were
even thinner than the design thickness. The thickness data from the field were deemed to
be essential to calibrate the GPR test results.
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CHAPTER 1: INTRODUCTION

Artificial neural network software for professionals (ANN-Pro) is a user interface
written for engineers actively involved in backcalculation of pavement layer properties using
the data obtained from a Falling Weight Deflectometer (FWD) test. It is a complete toolbox
developed as the final product of R39-2 project, “Nondestructive Pavement Evaluation Using
ILLI-PAVE Based Artificial Neural Network Models”, funded by lllinois Department of
Transportation (IDOT) through the lllinois Center for Transportation research activities.

ANN-Pro software is a deliverable of the R39-2 project intended to bring research
findings into engineering practice. The background information on Artificial Neural Networks
(ANNs), FWD test and pavement layer backcalculation can be found in the main technical
report of this project. ANN-Pro software aims to assess the structural condition of an existing
pavement by analyzing FWD data. The software allows users to conduct advanced
pavement structural analyses, similar to ILLI-PAVE finite element (FE) analyses, for
validating IDOT’'s mechanistic pavement analysis and design concepts with special
emphasis on extended life hot-mix asphalt (HMA) designs.

The objective of this manual is to make users familiar with many practical features of
this comprehensive toolbox. Accordingly, this manual provides guidance and details about
the operation of ANN-Pro. In addition, users are introduced with advanced software features
aimed to increase the efficiency while using the software.

The coding of ANN-Pro was initiated when R39-2 project started in 2004. The
mainframe was finished in about two years. Since then the software has been continuously
updated based on the feedback received from IDOT engineers. The software’s final version
1.0.0.0, described in this Manual, has been submitted to IDOT as a project deliverable.

DISCLAIMER

This software is based on the results of R39-2, Nondestructive Pavement Evaluation
Using ILLI-PAVE-Based Atrtificial Neural Networks. R39-2 is conducted in cooperation with
the lllinois Department of Transportation, Division of Highways, and the U. S. Department of
Transportation, Federal Highway Administration.

The contents of this software reflect the views of the authors who are responsible for
the facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the lllinois Department of Transportation or the Federal
Highway Administration. This software does not constitute a standard, specification, or
regulation.

SOFTWARE REQUIREMENTS

ANN-Pro was developed for computers running in MS Windows environment. It was
originally intended to operate in Windows XP operating system considering its availability in
IDOT’s computers. However, with the introduction of Windows Vista operating system in
2007, ANN-Pro was modified to work in both operating systems. Adaptation to newer
operating systems that may appear on the market in the future can be assured with very
minor modifications.

ANN-Pro was developed using object oriented programming (OOP). The coding was
done using Borland Delphi 7, which is also known as object Pascal. In addition, powerful
Delphi components were effectively utilized for better visualization and functionality of the
program.

HARDWARE REQUIREMENTS
ANN-Pro was developed to run efficiently without allocating memory resources of a
computer. Although lower speed processors may be feasible, an Intel Pentium Il processor



with 667 MHz clock speed is suggested as the minimum for practical purposes. Naturally,
the older the system is, it takes longer to setup the software or to run analyses. Therefore, it
is also suggested that the user have recently manufactured processor to have agreeably
faster operations with the software. In addition, a minimum 512 KB of randomized memory
(RAM) is recommended for effective use of the software. Finally, advanced visualization
features in the software were developed using the Delphi components. The visual effects,
however, are very much dependent on how Windows tools are shown by adjusting display
properties on the screen. There is no requirement for a specific graphics processor. The
minimum screen resolution is recommended as 800 x 600 pixels.

PROGRAM SETUP

The program is distributed with a setup file. This file is zipped and will be provided
separately for each distribution. First, the user needs to log in the computer with an
administrative account in order to set up the software. Otherwise, the setup process will not
be completed successfully. The zipped file needs to be opened into any existing folder. If
any older version of the software is already installed, it first must be installed. Double
clicking on the setup file will initiate the setup process (see Figure 1-1). The steps are then
relatively straight forward to follow since the setup is automatically created by Delphi
program. Although installation steps are self explanatory, Figures 1-2 through 1-7 show
details of the individual steps for the sake of completeness.

i Setup - Ann Professional Version 1.0.0.0 E|§|@

Welcome to the Ann Professional
Version 1.0.0.0 Setup Wizard
Thig will inetall 1.0.0.0 on your computer.

It iz recommended that you cloge all other applications before
continuing.

Click Mest to continue, or Cancel to exit Setup.

E..........H..EHD |[ Cancel

Figure 1-1. Setup welcome screen.




i Setup - Ann Professional Yersion 1.0.0.0

Licenze Agreement
Pleasze read the fallawing important infarmation befare continuing.

Pleaze read the following Licenze Agreement. vou must accept the terms of thiz
agreement before continuing with the installation.

DISCLAIMER 25
"This software iz a deliverable of the University of Ilinois Standard
Eesearch  Agreement [HR-39, research project entitled,
Mondestructive Testing Evaluation (MDT) Using ILLI-PAVE
Based Arfificial Meural Metworks, THE-39 12 conducted in

cooperation with the Ilinos Department of Transwortation ™

(¥ | accept the agreement

()| do not acocept the agreement

[ < Back ” Mext = ][ Cancel ]

Figure 1-2. Disclaimer — license Agreement for ANN-Pro.

i Setup - Ann Professional Yersion 1.0.0.0 E||E|E|

Select Destination Location
Where should Ann Professional Version 1.0.0.0 be installed?

D Setup will install Ann Profeszional Wersion 1.0.0.0 into the following folder.

To continue, click Mest. If you would like to select a different falder, click Browse.

| C:%Program Files&nn Professional Yergion 1.0.0.0 | [ Browsze...

Atb leazt 19.0 ME of free disk space iz required.

[ < Back ” Mext = l[ Cancel ]

Figure 1-3. Selection of software installation directory.




i Setup - Ann Professional Yergion 1.0.0.0 [Z||E|rz|

Select Start Menu Folder
Where should Setup place the pragram's shortcuts?

Setup will create the program's shartcuts in the fallowing Start bMenu folder.

To continue, click Mewt. If you would like to zelect a difterent folder, click Browse.

ioh 1.0.0.00 | [ Browsze...

[ ¢ Back ” M et > ][ Cancel

Figure 1-4. Creating shortcuts for ANN-Pro software.

i Setup - Ann Professional Yersion 1.0.0.0 E||E|E|

Ready to Install

Setup iz now ready to begin instaling Ann Professional Wersion 1.0.0.0 on your
camputer,

Click Install to continue with the installation, or click Back. if you want to review or
change any settings.

Drestination location:
C:\Program Filez%ann Profeszional Wergzion 1.0.0.0

Start bMenu folder:
Ann Professional Yersion 1.0.0.0

[ < Back ” Inztall l[ Cancel ]

Figure 1-5. Verification screen for program setup and start menu folder.



i Setup - Ann Professional Yersion 1.0.0.0

Installing

Pleaze wait while Setup installz &nn Professional Yersion 1.0.0.0 an your
camputer.

Extracting files...
C:\Program Filez“Ann Profezsional YWersion 1.0.0. 0AnnProZ007 exe

Cancel

Figure 1-6. Monitoring of progress while the software is being set up.

i Setup - Ann Professional Yersion 1.0.0.0 E]|E||X|

Completing the Ann Professional
Version 1.0.0.0 Setup Wizard

Setup haz finizhed ingtaling Ann Professional Werzion 1.0.0.0 on
waur computer. The application may be launched by selecting
the inztalled icons.

Click. Finish to exit Setup.

Launch Ann Profeszsional

Figure 1-7. Completion of installation and agreement of software launch.

When the setup finishes successfully, ANN-Pro is launched with an introductory animation
or movie (see Figure 1-8). It can be skipped by pressing the space button anytime. Then,
the startup screen of the software is shown (see Figure 1-9). If any project was opened



previously, then, the list of previous projects appears on the start-up screen (see Figure 1-
10). These projects can be easily opened by just clicking on the interactive texts.

Figure 1-8. A snapshot from the introductory movie for ANN-Pro.

d ) & @ ) = ANNPro - Neural Network Based Pavement Analyzer Program Yersion 1.0.0.0 - B X
J
— Ann Professional

| & o
Mews,,.  Qpen... About,

File Project Analysis Help

| Mavigator n

Start Up P ANN-Pro

ARM-Pro Meural Network Based Pavement Analyzer Program

J ey
Welcome to Ann-Pro
D oper...

Please click here to create a new project.

& list of recent files are listed below.

Mo recent file found!

Click here to open another file,
To get more infor mation about Ann Pro click here,

Model Lisk

| Model Name Description

Figure 1-9. Startup screen of ANN-Pro.



AMNM-Pro

AMM-Pro Meural Metwork Based Pavement Analyzer Program

Welcome to Ann-Pro

Please click here to create a new project.

Figure 1-10. Welcome screen with a previously opened project.



CHAPTER 2: RUNNING FWD ANALYSES

In this chapter, pavement backcalculation analysis is performed using a sample FWD
testing file. To illustrate the standard features, first, ANN structural models developed for
backward and forward calculation are revisited. The details of these models can be found in
the technical report. Then, a sample FWD file for Full Depth Asphalt Pavements is analyzed
step by step to fully explain the capabilities of ANN-Pro. During this analysis, user friendly
features of ANN-Pro are also explained for end users.

ANN STRUCTURAL MODELS

ANN-Pro contains many structural models developed for the forward and backward
calculation of flexible pavement layer properties. Tables 2-1 to 2-4 provide the inputs and
outputs of the current structural models implemented in the software. These models also
have version numbers to enable updating based on ongoing and future research findings
and the updated models will be included in the newer versions of this manual. Table 2-5
shows the abbreviations used in the software. Finally, Table 2-6 shows the current versions
of the models available with ANN-Pro.

Table 2-1. Artificial Neural Network Models for Full Depth Asphalt Pavements

Name Input Output

FW-1 tacBac Er Do, D1z, Das, Das.8cr 856,%
BW-1 Do, D12, D24, D3g, 1, Encr Eri

BW-2 Do, D12, D24, Dss, t,¢ €ac’ €56, pEV

Table 2-2. Artificial Neural Network Models for Conventional Flexible Pavements

Name Input Output

FW-1 tacr tepr Eacr Kegr By oo Dlz D2 Das: Spc:
SG,CDEV

BW-1 Do, D12, D24, Dss, tac: tos Eac: Eri

BW-2 Do, D12,D24, Dss, tac, tee: Eacs Eri Kes

BW-3 Do, D12, D2s, Dss, tac, tes EAC: £5G,ODEV




Table 2-3. Artificial Neural Network Models for Full Depth Asphalt Pavements on Lime
Stabilized Soils

Name Input Output
FW-1 tac: tiss: Eact Eiss: Ery Do, D12, D24, D3s
FW-2 tacs tiss) Eacy Eisss Eri EaC €5G,0DEV
BW-1 Do, D12, D24, Dzs, tac, tiss Eac: Eri
BW-2 Do, D12, D24, Dss, tac, tiss:Eac: Eri Eiss
BW-3 Do, D12, D24, D3s, tac, fiss EAC: €5G,ODEV

Table 2-4. Artificial Neural Network Models for Conventional Flexible Pavements on
Lime Stabilized Soils

Name Input Output
FW-1 tac: tees lisss Eacy Keg »Eisss Eri Do, D12, D24, D3s
FW-2 tac: teps tss) Eacy Keg 'Eisss Er €AC) €5G,ODEV
BW-1 Do, D12, D2a, Dsg, tac, teps tiss Eac: Er

All structural models developed for full depth asphalt pavements (FDP), conventional
flexible pavements (CFP), full depth asphalt pavements on lime stabilized soils (FDP-LSS)
were validated with field data. However, conventional flexible pavements on lime stabilized
soils (CFP-LSS) could not be validated since field FWD data were not available. Therefore,
the reliability of CFP-LSS structural models cannot be assured fully. However, their
validation with synthetic data obtained from the ILLI-PAVE FE program was accomplished
successfully.



Table 2-5. List of abbreviations used in the ANN-Pro

FDP Full-depth asphalt pavement

FDP-LSS | Full-depth asphalt pavement on lime stabilized subgrade

CFP Conventional flexible pavement

CFP-LSS | Conventional flexible pavement on lime stabilized subgrade

D; Sensor deflection corresponding to 9000 Ib loading at a distance of “i”
inches from the center of loading (in mils)

tac Thickness of asphalt concrete layer in inches

tiss Thickness of lime stabilized soil layer in inches

tee Thickness of granular base layer in inches

Eac Elastic layer modulus of asphalt concrete layer in psi

Eiss Elastic layer modulus of lime stabilized soil layer in psi

Kes modulus constant for stress-dependent granular base K-0 model in psi

Eri Breakpoint resilient modulus of unmodified subgrade in psi

EaC Horizontal strain at the bottom of asphalt concrete layer in inch/inch

£56 Vertical strain on top of the subgrade in inch/inch

ODpEV Deviator stress on top of subgrade in psi




Table 2-6. ANN Structural Models Available for ANN-Pro Version 1.0.0.0

Software Version v1.0.0.0
First Release Date July 11, 2007
Available Models

Pavement Type Model Name Model Version (m)

FDP FW-1 1.0.0
BW-1 1.0.0
BW-1 1.0.0

CFP FW-1 1.0.0
BW-1 1.0.0
BW-2 1.0.0
BW-3 1.0.0

FDP-LSS FW-1 1.0.0
FW-2 1.0.0
BW-1 1.0.0
BW-2 1.0.0
BW-3 1.0.0

CFP-LSS FW-1 1.0.0
FW-2 1.0.0
BW-1 1.0.0

SOFTWARE COMPONENTS

ANN-Pro contains toolbars that are designed to make the users better organized and
comfortable while performing FWD backcalculation analysis. These are Standard Toolbar,
Navigator Toolbar, Data Editor Toolbar and Results Toolbar. These toolbars are mainly
used to manage all operations in the software including file management, running neural



network analysis and viewing results in a user-friendly environment. The task of each button
in a toolbar is self-explanatory; however, they will be explained in detail using figure titles
while running a sample FWD analysis.

Standard toolbar (see Figure 2-1) is mainly used to reproduce file processing
functions using shortcuts. These are for creating a new file (New), opening an existing file
(Open), saving a project file (Save) and closing a currently open file (Close). Instant access
to project information and data editor is possible. In addition, FWD analysis can be
performed (Perform Analysis) and the results including the analysis log are viewed easily at
any time (Analysis Result and Analysis Log). Finally, the latest version number can be
viewed using standard toolbar (About) (see Figure 2-2).

Jpoodaap) 0

Save.., i_lose Project Data Petform  Analvsis  Analysis About.
Information  Editar Analysis  Result Log
File | Project | Analysis | Help

Figure 2-1. Standard toolbar.

Figure 2-2. Version information through about button.

Navigator toolbar (see Figure 2-3) is mainly used to direct the user in running FWD
analysis step by step. The first step is to enter project information (Project Information). The
second step is to import the FWD data from a file into the program (Data Editor). Then, the
FWD analysis needs to be run using “Perform Analysis” button. After a successful FWD run,
the results can be viewed using “Analysis Result” and “Analysis Log” buttons.

In all Windows based programs, the shortcuts are replicated in different places of the
software. Similarly, in ANN-Pro, there are many buttons such as Analysis Results, Perform



Analysis, etc. available redundantly. In fact, the navigator toolbar is fully embedded in the
Standard Toolbar. This way, the user will have the flexibility to use these buttons.

Data editor toolbar (see Figure 2-4) is the most comprehensive and capable toolbar
since FWD data needs to be modified before importing it to ANN-Pro. It includes many
buttons that are designed to quickly import and export data. Import Data button provides
regular and special import options while Export Data button easily exports data to Microsoft
Excel. Copy button is used for copying the whole column or row in ANN-Pro data editor.
Paste button is used to paste the data into ANN-Pro editor. Set Selection Value button is

| MNawigator il | |

Project Content £

Qg Project Information

F| Data Editor

g

Analysis

&é Perform snalysis

Analysis Results

analysis Result
Y
J snalysis Log

Figure 2-3. Navigator toolbar.

g

used for column or row operations such as entering values of layer thicknesses for the
whole row or column, etc. Analysis Selected button is used to run FWD analysis for selected
rows. In addition to these, adding, inserting or deleting rows are possible in the program.
Clear button clears the whole data in the data editor. Custom Columns is used to create
columns based on user’s request. Finally, Script Editor is ANN-Pro’s own script editor that
may be used to program ANN-Pro data.

et Py
&2
g  § <& O
analvsis Selected

Impork Daka Imnpork JILS Daka  Expork Daka Copy Paste

Vs

Sl

Set Selection Yalue. ..

|| '
| |
ﬂ ek \xﬁ =
Clear Cuskam Colurmns. .. Scripk Editor. .

Figure 2-4. Data editor toolbar.
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Add Row  Imserk Row
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Delete Rows




Results toolbar (Figure 2-5) is used for viewing results in a user friendly environment.
Graph button is used to plot analysis results. The results can be exported in “xIs”, “xml”,
“csv” and “html” file format while the graphs can be exported in “bmp” format (Export button).
In addition, the results can directly be exported to any spreadsheet program using Copy
button in the results toolbar. Finally, View Button can be used to view the data in different
ways such as showing only data statistics, data inputs or summary etc.

Analvsis Resulk

Analysis Result

Results can be viewed [ exported in various Formats

Analysis Result of All Records
g

.JI' i :.E % > v 2
araphs Expork View Copy

Figure 2-5. Results toolbar.



RUNNING A SAMPLE FWD ANALYSIS (QUICK START)

In this section, an example problem is solved to backcalculate flexible pavement

layer properties. Sample data obtained using ILLI-PAVE finite element analysis program are
used to test the capabilities of the neural network based structural model. One hundred
FWD stations are randomly selected from the database which was used to test BW-1 model
developed for full depth asphalt pavements. The FWD data including thickness information
are stored in Microsoft Excel together with ILLI-PAVE estimates of layer properties (see
Figure 2-6). Figures 2-7 through 2-26 illustrate the steps necessary to run the analysis for
the above mentioned data.

wh e

©®

10.

11.

12.

13.

14.
15.

16.

17.

Click on Start button and select ANN-Pro from Programs Menu (Figure 2-7).

First an introductory movie appears and then ANN-Pro starts (Figure 2-8).

Click on New button to create an empty project and select Empty Project to save the
results of FWD analysis (Figure 2-9).

Complete the project information form (Figure 2-10).

Click on Add Model button (Figure 2-8) on Model List toolbar to select ANN structural
model for backward analysis. The corresponding pavement model needs to be
specified along with the ANN structural model (Figure 2-11). The whole screen
should be viewed to confirm the selected model (Figure 2-12).

Select Data Editor using Navigation Toolbar to import FWD data and examine the
required input format of the structural model (Figure 2-13).

Click on Import Data once to import the FWD data from MS Excel and show the
location of Excel file in the computer and click Next (Figure 2-14).

Select the sheet where the data are available (Figure 2-15).

Define the copy/paste area in the sheet using Excel column and row numbers and
click Next (Figure 2-16). Deflections are normalized to 9 000 Ib load prior to
importing.

Make sure the data are imported correctly by examining the rows and columns in the
data editor (Figure 2-17). Enter thickness values if necessary.

Click on Perform Analysis button in the navigation toolbar to run ANN analysis, the
details of which are shown on the screen (Figure 2-18).

After ANN analysis is finished successfully (it usually takes 2 to 15 seconds
depending on the number of data and processor speed of the computer), the results
are automatically given by ANN-Pro (Figure 2-19).

The inputs and outputs are automatically shown on the data editor by default.
However, users can modify the appearance of results by specifying different views in
View Button (Figure 2-20). For example, users can view their estimates and ANN
results together by selecting user outputs, i.e., estimates (Figure 2-21). ANN outputs,
however, are always shown on the data editor.

The users can view the data statistics by clicking on Show Statistics (Figure 2-22).
The results can also be shown using two-way graphs (generally, x axis shows the
user estimates, y axis shows the results of ANN analysis). To plot a two-way graph,
Graph button needs to be clicked once (Figure 2-23).

After pressing Add Graph button, the graph wizard is shown (Figure 2-24). Users can
select any two columns that are already shown on the results screen. Showing
legends, background images and drawing “y=x" line are given as options to users.
Selection of these options needs to be confirmed.

A sample plot is shown in Figure 2-25. This can be exported using Export button in
“bmp” file format (Figure 2-26). Alternatively, results can be copied into Excel and
graphs can be created using this program.
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Figure 2-6. Sample FWD file in Microsoft Excel.
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Figure 2-17. Overview of data editor after the FWD information is imported.
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Figure 2-18. Run time screen to view the details of artificial neural network analysis.
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Figure 2-19. Viewing the results of FWD analysis in the data editor.
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Figure 2-21. Alternative view for results of FWD analysis.
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Figure 2-22. Statistical summary of FWD findings through ANN-Pro.
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CHAPTER 3: EXTRA FEATURES

ANN-Pro includes many features that enhance the capabilities of the software
program. These features are mainly implemented to provide better organization, comfort
and efficiency within the software. During development stage, the program was modified
many times based on the feedback obtained from end users. Accordingly, some
components of the program were rewritten and many advanced features were added. For
example, the capability of importing and exporting FWD analysis data from MS Excel has
been incorporated. Copy and paste from the MS Excel directly to ANN-Pro was made
possible. An advanced importing option that enables users to bring irregularly formatted
data into software was also included. The visualization of the data in the form of graphs was
enhanced so that essential data and analysis graphs can directly be exported to reports. In
addition, crucial statistical information, such as the mean, standard deviation, etc. of the
FWD analysis results has been added to the output of ANN-Pro. The latest improvement in
the software now offers the use of scripts to edit the FWD data based on user needs. In the
following section, the utilization of some of these features will be explained in detalil.

IMPORTING DATA FROM JILS FWD MACHINE

ANN-Pro can utilize JILS data for FWD backcalculation purposes. First, ANN
structural model needs to be specified as explained in the previous section. The following
steps are necessary to successfully import the data (sample JILS file is distributed with
setup file.

* In the Data Editor, Import JILS Data option is clicked and JILS data needs to be
selected (Figure 3-1).

* When the data file is selected, ANN-Pro automatically determines the column
headings of JILS FWD output data file. Then, the user can match these columns
with the ones defined in ANN-Pro structural model (Figure 3-2). Corresponding
columns can be selected in Data File Columns and ANN Model Columns
separately and Join button is clicked for each variable in the model. The matched
columns are shown in the link info screen. (Figure 3-3). Data from JILS file is
automatically normalized to 9000 Ibs.

The same feature can also be used to import FWD data readily available in MS Excel.
(Import Data -> Special Import) To use this feature, FWD data available in MS Excel should
be separated according to columns. Each variable needs to have a heading so that ANN-
Pro can distinguish each variable of the structural model. In other words, Special Import is
used when matching of columns is desired. The steps explained in Figures 3-1 to 3-3 can be
repeated with the properly formatted Excel file.
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Figure 3-3. Observation of link between ANN Model and data file.
DIRECT COPY AND PASTE

Importing Data

ANN-Pro provides variety of options for importing data from MS Excel. Among all
these, direct copy and paste option may be the easiest for end users. Since ANN-Pro is a
Windows operating system based software, the user is expected to be familiar with the copy
and paste feature existing in all Microsoft based software products.

To illustrate the irregular data import using direct copy and paste, FWD analysis for
backcalculation of full depth asphalt pavement properties is repeated here. Since the same
problem was already described in the previous section, only the data editor part will be
explained. Figure 3-4 shows the format of FWD data available in MS Excel. The data
columns DO, D12, D24, D36 and tAC are the necessary ones for the execution of FDP-BW1.
The steps to copy the data for the first 11 stations are explained below (sample Excel file is
distributed with setup file):

1. In the MS Excel file, choose the column DO and the first 11 FWD station data by
selecting them with the mouse. The selected area will then be highlighted (Figure 3-
5).

2. Go to Data Editor of ANN-Pro (assuming that the FDP-BW1 model is already
specified and data editor menu is shown on the screen) and click Paste button
available on the data editor toolbar (Figure 3-6). Notice that all the cells in ANN-Pro



will be highlighted red, since ANN-Pro internally checks if all the column values were
entered or not. If any of the inputs were not entered or shown as zero, the cells will
be indicated as red. Then go to MS Excel file again. This time, chose the column
D12 and the first 11 FWD station data by selecting them with mouse. The selected
area will be highlighted. Go to ANN-Pro Data Editor and click on the column heading
“D_12". Then right click or use menus to copy. The column will be selected and
highlighted. Click on paste in this condition. This procedure can be repeated for all
the data columns.

Another option is that user can select multiple columns in MS Excel and copy this
data (Figure 3-7).

Multiple data columns can then be pasted into Ann-Pro directly using paste button
(Figure 3-8).

After all of them are imported into the program, the cells will be colored as white,
showing that the project is ready to be analyzed. Thickness can be input manually or
by using the Set Selection Value Button, if desired.

The user can refer to the previous section for the other steps for conducting ANN
analysis.
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Figure 3-4. Sample Excel file to import FWD data by copy and paste.
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Figure 3-5. Selection of the first data column for direct copy and paste.
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Figure 3-6. Pasting the first column from MS Excel to ANN-Pro data editor.
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Figure 3-7. Selection of the multiple data columns for direct copy and paste.
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Figure 3-8. Pasting multiple columns from MS Excel to ANN-Pro data editor.

Exporting Data

Excel.

The direct copy and paste can also be used to extract data from ANN-Pro to MS
The following steps show how to export the results of FWD backcalculation analysis

on to MS Excel sheets.

1.

The ANN structural model inputs need to be entered fully to properly run FWD
analysis (Figure 3-9). Assuming that the FWD backcalculation analysis was
performed successfully, the results need to be exported to MS Excel (Figure 3-10).
The data available in the results toolbar is selected with mouse similar to MS Excel
(Figure 3-11). Then use the Copy button on the toolbar to copy all the data.

Open a blank Excel sheet and bring the cursor into any of the cells and then right
click or use menus to paste the data (Figure 3-12).

If the user wants to export all the data in the data editor including the column
headings, then click on Export in the results toolbar. Then, Save As screen appears
(Figure 3-13). The results can be exported in different formats including MS Excel
(.xls), Comma Separated File (.csv), and Web page file (.html or .xml).

Then the resultant file is opened in MS Excel (Figure 3-14) if the data are exported
using “xIs” file format. Windows Notepad or Wordpad programs can be used to view
files with the “txt” extension. Similarly, Internet Explorer or Mozilla Internet browsers
show “html” or “xml” files.
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Figure 3-9. Appearance of data editor before FWD analysis (no expected output is entered).



Analysis Resul:

Analysis Result

Results can be viewed | exported in various Formats

Analysis Result of All Records

) -[R2 &5 [

Graphs Export View Copy
Resulks | N E
= Qukpuk Values For FDP_EW1
1D EE':iC ‘ {Usesg'giput} ‘ Ep—:i"l ‘ I:USE[I’E E:Etput]l
psi psi
1 1,061,500 ol 400 o
2 702,600 ] &,800 0
3 1,457,300 ol 3,700 o
4 107,200 ] 10,400 0
5 452,500 ] 7,500 0
& 1,236,700 ol  a500 o
7 702,500 ] 5,700 0
& 1,617,600 o 12,500 0
9 &70,500 ] 9,100 0
10 525,900 ] 1,200 0
11 538,900 ] 3,500 0
12 1,790,100 o 10,800 0
13 a50,300 ] 10,200 0
[Total Record Count = 13 || Tatal Column Count = 10

Figure 3-10. Appearance of results windows after FWD analysis.
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Figure 3-11. Selected results data to export into MS Excel.
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Figure 3-12. Copied results in the empty MS Excel sheet.
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Figure 3-13. Copied results in the empty MS Excel sheet with save option.
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Figure 3-14. Exported results in MS Excel.

DEFINING CUSTOM COLUMNS

Backcalculation

analysis is usually based on the deflections obtained through FWD

testing. Importing deflection data is therefore a major first step in backcalculation analysis.
However, one may need to input extra information such as temperature, pavement layer
thickness, etc. to have a complete database. For such instances, ANN-Pro provides
opportunity to add custom columns in the data editor. To illustrate the details of this feature,
surface temperature information will be added to each station for the whole test section.
Figure 3-9 shows the data editor with the datasets already imported by some means such
as by direct copy and paste or by defining data area, etc. The steps for defining custom

columns are as follows:

1.

In the data editor toolbar, click on Custom Columns button. Custom Columns wizard

is shown on the screen. Click on Add button on this form (Figure 3-15). A new
column name, a data type and the display format are automatically created for the

user.



To change the column name to Temperature, click on new column cell and type the
name of the variable. The unit information can also be entered on the same cell. The
data type should be compatible with the type of temperature data. Since temperature
can be a floating number, Double type can be selected (Figure 3-16). Other types
are limited with integer and string for the end users in ANN-Pro. To use ANN-Pro
scripts (see running scripts) along with the custom columns, the custom column type
should either be integer or double. Click OK to create the custom column. Default
display format can be left unchanged.

The temperature column can be viewed on the data editor as in Figure 3-17.

The information to be entered in each cell (row) can be assigned by selecting each of
them separately. However, if the information to be entered is the same for all rows,
then, “Set Selection Value” button may be used efficiently. To do this, first the
column to be modified needs to be selected. Then, click Set Selection Value button
in the Data Editor Toolbar (Figure 3-18). Click OK to set the value and data editor is
refreshed (Figure 3-19).

In addition to above features, the column can be modified partially. For example, if
the first five cells of the temperature column need to be modified, they need to be
selected first. Set Selection Value button again needs to be used for this purpose.
Figure 3-20 shows the data editor with first five cell temperature column changed to
100 degrees Fahrenheit.

‘& Custom Columns E|
Define Custom Columns
Define your columns and dick Ok
Column Name Data Type |Di5{:|la!‘|I Format
_| MNew Column Double #,#20,00
Add | ’ Delete ] ’ ok ] [ Cancel

Figure 3-15. Custom column wizard.



Custom Columns

Define Custom Columns

Define your columns and dick Ok

Column Name

| A Temperature (Fahrenheit) ail %, ##0.00

[ Add H Delete ] [ ok H Cancel

Figure 3-16. Defining temperature column using custom columns.
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Figure 3-17. Appearance of temperature custom column in the data editor.
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Figure 3-18. Setting the value of temperature column.
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Figure 3-19. Specifying temperature values.
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Figure 3-20. Entering temperature values.

INPUT AND OUTPUT DATA VERIFICATION

ANN-Pro Data Editor internally checks the compatibility of the data with the
requirements of the ANN structural model used in the analysis. It warns the user if there is
any error in the data using color schemes. It also provides a detailed error definition
including the location of error, type of error, etc., in the analysis log.

Zero and Negative Column Detection

In the above sample problem, the value of D_O in the sixth row is intentionally
changed to 0 so that ANN-Pro can determine the type and location of error (Figure 3-21).
The software internally checks the data editor row-wise. If any of the cells in a row (except
the ones belonging to custom columns) is zero, then, it assigns the entire row a red color. It
does not process the red row in the analysis and the results are reported as zero (Figure 3-
22).
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Figure 3-21. Red cells indicating that there is an error in the row indicated.
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W 10 |525,868.81 |0.00 1,204.09 |0.00
N 11 |538,930.83 |0.00 8,456.98 |0.00 e
Total Record Count = 11 |[Total Column Count = 11

Figure 3-22. Analysis log screen (yellow cells indicate the results are out of training range).

Deflection Checks

ANN-Pro inspects the consistency of the FWD deflection data. It first ensures that
there is no zero deflection in the inputs. Secondly, it controls that the deflections should be
smaller as they go away from the center of loading. If any of these checks fails, then the
corresponding row is highlighted as red and reported in the analysis log. In the above
example, D_O should be greater than the values of other deflections D_12, D_24, etc. Since
the red row is not analyzed, the error is reported in the analysis log (Figure 3-23). Finally,



the deflections with values out of the training data range are indicated as yellow although
they are still processed in the analyses.

Date Time Type Description

4/15/2008 2:11:26 Information Starting analysis
AM

4/15/2008 2:11:26 Information Clearing analysis folder...
AM

4/15/2008 2:11:26 Clearing analysis folder done
AM

4/15/2008 2:11:26 Information Checking project...
AM

4/15/2008 2:11:26 Information Checking project done
AM

4/15/2008 2:11:26 Information Checking for logical errors
AM

4/15/2008 2:11:26 Error Input value is zero on row 6 column D_0
AM

4/15/2008 2:11:26 Error D_12is greater than D_0 on row 6
AM

4/15/2008 2:11:26 Information Starting analysis procedure for FDP_BW1
AM

4/15/2008 2:11:26 Information Preparing input data for FDP_BW1...
AM

4/15/2008 2:11:26 Information Preparing input data for FOP_BW1 done
AM

4/15/2008 2:11:26 Information Creating train set file for FDP_BW1...
AM

4/15/2008 2:11:26 Information Creating train set file for FDP_BW1 done
AM

4/15/2008 2:11:26 Information Running analysis for FDP_BW1...
AM

4/15/2008 2:11:26 Back Ann C:\Documents and Settings\All Users\Application Data\AnnPro\Analysis=
AM Log BackAnn.exe

0=
Train.set

Figure 3-23. Analysis log in text format.



RUNNING ANN-PRO SCRIPTS

ANN-Pro users are commonly interested in the deflection data obtained from FWD
test machines. Since these machines usually produce during testing other useful information
such as surface temperature, coordinates of testing locations, etc., there may be a need to
change, eliminate, or modify the data before running an analysis. For this purpose, ANN-Pro
provides some scripts that allow users to work with the FWD data to perform data
corrections, verifications, or modifications. ANN-Pro scripts are designed to make such data
processing easier for the user. The main advantage of scripting is that users can execute
their own scripts. In this section, a sample script is described to eliminate the rows with
temperature value being less than 84 degree Fahrenheit and greater than 88 degree
Fahrenheit. Figure 3-24 shows the data editor before the script is initiated. To run the given
script, the following steps are necessary:

1. Click on the script editor and select Eliminate Rows (between) script (Figure 3-25).

2. Enter the name of the column (i.e., Temperature in degrees Fahrenheit) based on
which termination criterion is defined (Figure 3-26).

3. The lower bound screen appears. The lower limit temperature of 84 degrees
Fahrenheit is entered here (Figure 3-27).

4. The next screen is the upper bound one. The upper limit temperature of 88 degrees
Fahrenheit is entered here (Figure 3-28). Accordingly, the rows with temperature
values lower and greater than specified temperatures are eliminated.

Data Editor v
Data Editor

Input, impaort or export your dataset

T _ — — J—
@ @B [ Q <A ‘ FomE PEE T
- N2 - PEny
Import Data ExportData | Copy Paste | SetSelection Value... | Analysis Selected | Add Row  InsertRow | Delete Rows
& [ i3
-+ A -
Clear | Custom Columns... | ScriptEditor...
— S
= Temperature D0 ‘ D_12 ‘ D_24 ‘ D_36 ‘ tAC E_AC ERi
(Fahrenheit) mils mils mils mils inches psi psi
#1 30.00 582 3.97 3.10 12,10 0.00 0.00
B 2 31.00 5.58 3.59 2.84 15.40 0.00 0.00
_3 32,00 13.80 11.35 3.36 5.99 5.90 0.00 0.00
_4 83.00 24,61 12.24 5.57 3.01 6.80 0.00 0.00
B 5 34.00 7.34 5.57 4.42 3.42 15.50 0.00 0.00
_6 85.00 244 1.89 1.65 1.43 23.70 0.00 0.00
: 7 36.00 4.89 3.85 3.27 2.73 19.30 0.00 0.00
_8 37.00 263 2,15 1.84 1.55 18.00 0.00 0.00
_9 38.00 9.10 7.10 5.16 3.63 9.40 0.00 0.00
| |10 39.00 14.44 12.07 9.63 7.41 10.80 0.00 0.00
11 90,00 7.64 5.92 4.58 344 13.00 0.00 0.00
Total Record Count = 11 | Total Column Count = 3

Figure 3-24. The appearance of screen before the script is initiated.
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u 20.00 7.64 5.2 4.58 3.4 1300 000 0.00
il [Total Column Count = 3
Model List |

Figure 3-25. Selecting scripts on the data editor.

[Navigator 7 [Data Editor -
Project Content Data Editor
k<
Input, import or export your dataset
g Project Information E
=
g OO0 L | § |of = =
Data Editor ImportData  ExportData | Copy  Paste | SetSelection Value.. | AnalysisSelected | AddRow InsertRow | Delete Rows
Analysis g
. Custom Qutput Values for
Perform Analysis Columns Column Name FDP_BW/1
- D enznlie |Temperamre(Fahrenheit) ‘ i E_A_(: E—'F
Analysis Results ’l inches | ps | pd |
1 50,00 5.92 b 10 0.00 0.00
H 81,00 5.58 40 0.00 0.00
@ Analysis Result 3 52,00 1380 50 0.00 0.00
4 83.00 2461 1224 5.57 301 6.80 0.00 0.00
i 5 84,00 7.3 5.57 442 342 15.50 0.00 0.00
Analysis Log 5 85.00 24 189 165 143 =m0 0.0
7 86.00 4.89 385 327 273 19,30 0.00 0.00
8 87.00 263 215 184 155 18,00 0.00 0.00
9 83.00 9.10 7.10 5.16 363 9.40 0.00 0.00

ERER S

Model Name: Description

MFDP_BW1 \This Mode! backealculates EAC and ERi for FDP

Figure 3-26. Specifying temperature column in the data editor.
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Figure 3-27. Specifying lower bound temperature in the data editor.
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Figure 3-28. Specifying upper bound temperature in the data editor.
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Introduction to ANN-Pro Scripting

ANN-Pro users can write their own scripts and execute them on the data editor. The
scripting language in ANN-Pro is Pascal. Variable definitions, loops and controls can easily
be written using Pascal. The idea of scripting is very similar to macros defined MS Excel.
Therefore, it is expected that users familiar with writing macros in MS Excel will have no
difficulty in following Pascal scripts.

A simple ANN-Pro script given in Table 3-1 illustrates the general concepts and the
use of for loop and if controls. The code starts with the definition of variables using “var”
keyword. Each variable requires the use of semicolon. In addition, the same type of
variables can be defined on the same line by just separating those using commas. Since
coding in Pascal is done in blocks, everything is written between “begin — end”. When only
one row needs to be written, “begin — end” is not needed. The first “if” control needs to have
block definition since it includes more than one row when it is executed. This concept is also
valid for all the other control loops such as “while — end”, “repeat — end”.

In this example, the odd and even numbers are added separately and assigned to
variables SumOfOdd and SumOfEven. Furthermore, the numbers are checked if their
values are greater than 5 or not. The results are printed on the screen. Since the main
purpose of this part is not to introduce Pascal, readers are referred to text books written for
Pascal language.



Table 3-1. Sample Pascal code to illustrate the use of basic programming concepts

var
l:integer;
SumOfOdd, SumOfEven:integer;
begin
SumOfEven = 0;
SumOfOdd := 0;
for 1:=0 to 10 do
begin
if  mod 2 =0 then
begin
SumOfEven := SumOfEven + ;
ShowMessage(‘Even Number’);
end
else
begin
SumOfOdd := SumOfOdd + I;
ShowMessage(‘Odd Number’);
end;
if 1 > 5 then
ShowMessage('l > 5)
else
ShowMessage('l <=5);
end;
end;

ANN-Pro uses scripting only for managing the Data Editor. To use functions written
using ANN-Pro scripts, first “frmMain” namespace needs to be utilized. Table 3-2 provides a
sample script for deletion of all the records in model BW-1 with “D_0" value less than 10.




Table 3-2. Sample Pascal code to illustrate the use of basic programming concepts

for I:=frmMain.DataEditorRecordCount - 1 downto 0 do
begin
if frmMain.Cell['D_0’, 1] < 10 then
frmMain.DeleteRow(l);
end;

frmMain.RefreshDataEditor;

ANN-Pro supports the following functions that can operate in the “frmMain”.

1. Cell [ColumnName, RowlIndex]

It returns the value of cell whose Column Name and Row Index are specified. It has Read
and Write access. For example, the second row of D_0 column can be multiplied with 2
using the following script.

frmMain.Cell['D_0’, 1] := frmMain.Cell['D_0’, 1] * 2;

2. SetUnit (ColumnName, UnitName, UnitDescription, MultipleBy, DisplayFormat)
This function uses to change the unit of any column.
ColumnName : The name of the column to be changed

UnitName : The name of new column unit
UnitDescription : Description of new unit
MultipleBy : New unit coefficient (generally taken as 1)

DisplayFormat : Specifies the display format

3. GetUnitName(ColumnName)
It returns the name of Column in string format.
ColumnName : string;

4. GetUnitDescription(ColumnName)
It returns the description of column unit in string format.
ColumnName : string;

5. GetUnitMultipleBy(ColumnName)
It returns the coefficient of any column in float variable.
ColumnName :string;

6. GetUnitFormat (ColumnName)
It returns the format of a unit in string.
ColumnName : string;

7. SetUnitName(ColumnName, UnitName)
Change the unit of the column.
ColumnName : string;

UnitName . string;




8. SetUnitDescription(ColumnName, UnitDescription)
It changes the description of any unit.

ColumnName : string;

UnitDescription: string;

9. SetUnitMultipleBy (ColumnName, MultipleBy)
It changes the coefficient of any column.
ColumnName : string;

MultipleBy : float;

10. SetUnitFormat (ColumnName, UnitFormat)
It changes the format of unit

ColumnName : string;

UnitFormat  : string;

11. RefreshDataEditor
It refreshes the data editor to show the latest updates.

12. DataEditorRecordCount
It returns the count of record in the data editor in integer format.

13. DeleteRow(Index:integer)
It deletes the row given with the specified row number.
Index . integer;

14. GetlnputColumnName / GetOutputColumnName / GetCustomColumnName
It returns the name of the column with the given index.
Index :integer;

15. GetCustomColumnCount / GetinputColumnCount / GetOutputColumnCount

It provides the number of Input, Output and Custom columns.

The following scripts given in Tables 3-3 through 3-6 are the ones implemented in ANN-Pro.
These will be enhanced in the future versions of the program. The users are strongly
encouraged to examine them to extend the capabilities of the software for future needs.



Table 3-3. Pascal Code for Eliminating Rows (Between)

var
I, Kiinteger;
LowerBound:double;
UpperBound:double;
LowerBoundStr:string;
UpperBoundStr:string;
SourceColumnName:string;
begin
SourceColumnName := frmMain.InputBox('Column Name', 'Column Name', 'load’);
if SourceColumnName =" then Exit;

LowerBoundStr := frmMain.InputBox('Column Value', 'Enter Lower Bound', '9000');
if LowerBoundStr =" then Exit;

UpperBoundStr := frmMain.InputBox('Column Value', 'Enter Upper Bound', '9000');
if UpperBoundStr = " then EXxit;

try
LowerBound := StrToFloat(LowerBoundStr);
UpperBound := StrToFloat(UpperBoundStr);
except
ShowMessage('Upper and Lower bound values should be floating (real) numbers');
Exit;
end;

if LowerBound >= UpperBound then

begin
ShowMessage('Lower Bound should be less than the upper Bound!);
Exit;

end;

for I:=frmMain.DataEditorRecordCount - 1 downto O do
begin
if frmMain.Cell[SourceColumnName, 1] < UpperBound then
frmMain.DeleteRow(l);
if frmMain.Cell[SourceColumnName, |] > LowerBound then
frmMain.DeleteRow(l);
end;
frmMain.RefreshDataEditor;
end;




Table 3-4. Pascal Code for Eliminating Rows (Less Than)

var
I, Kiinteger;
SourceValue:double;
SourceValueStr:string;
SourceColumnName:string;

begin
SourceColumnName := frmMain.InputBox('Column Name', '‘Column Name', 'load");
if SourceColumnName =" then Exit;

SourceValueStr ;= frmMain.InputBox('Column Value', 'Please type column value', '9000";
if SourceValueStr = " then Exit;

try
SourceValue := StrToFloat(SourceValueStr);

except
ShowMessage('‘Column Value should be float?;
Exit;

end;

for I:=frmMain.DataEditorRecordCount - 1 downto O do
begin
if frmMain.Cell[SourceColumnName, I] < SourceValue then
frmMain.DeleteRow(l);
end;
frmMain.RefreshDataEditor;
end;




Table 3-5. Pascal Code for Multiplying Deflection Columns

function LeftStr(AString:string; Count:integer):string;
var
l:integer;
begin
Result :=";
for I:=1 to Count do
Result := Result + AString[l];
end;
var
I, Kiinteger;
OutputColumnCount:integer;
ColName:string;
MultipleByColumnName:string;
begin
MultipleByColumnName := frmMain.InputBox('Column Name', 'Please type column name’,
'load”;
if MultipleByColumnName =" then Exit;

OutputColumnCount ;= frmMain.GetOutputColumnCount;

for 1:=0 to frmMain.DataEditorRecordCount - 1 do
begin
for K:=0 to OutputColumnCount - 1 do
begin
ColName := frmMain.GetOutputColumnName(K);
if LeftStr(ColName, 2) ='D_" then
frmMain.Cell[ColName, ] = frmMain.Cell[ColName, ] *
frmMain.Cell[MultipleByColumnName, I];
end;
end;
frmMain.RefreshDataEditor;
end;




Table 3-6. Pascal Code for Modifying Single Columns

var
l:integer;
ColName:string;
MultipleByStr:string;
MultipleBy:double;

begin
ColName := frmMain.InputBox('Column Name', 'Please type column name', 'D_0";
if CoIName =" then Exit;

MultipleByStr := frmMain.InputBox('Multiply By', 'Please enter a number to multiply’, '1'");
try
MultipleBy := StrToFloat(MultipleByStr);
except
ShowMessage('Invalida floating value");
Exit;
end;

for 1:=0 to frmMain.DataEditorRecordCount - 1 do
begin
frmMain.Cell[ColName, 1] := frmMain.Cell[ColName, I] * MultipleBy;
end;
frmMain.RefreshDataEditor;
end;




APPENDIX B

Soft Computing Based Pavement and Geomaterial
System Identifier
SOFTSYS
Version 0.1.0.0

User’s Manual
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CHAPTER 1: INTRODUCTION

SOFTWARE REQUIREMENTS
SOFTSYS is an SOFTSYS has been developed to perform the following task in real
time as part of conducting FWD tests:

. Determination of pavement thickness
. Estimation of pavement moduli
. Identifying pavement parameters such as poisons ratio

SOFTSYS interprets FWD test results and performs pavement structural analysis
based on the Finite Element Method (FEM). FEM provides modeling of pavement structure
due to applied wheel loading to compute pavement deflections. FEM internally captures the
nonlinear material properties to simulate the real pavement behavior. SOFTSYS, therefore,
has an inherent capability of incorporating the nonlinear properties of aggregate and soil
layers underneath pavements. Unlike the linear elastic theory commonly used in pavement
analysis, nonlinear unbound aggregate base and subgrade soil characterization models are
used in the FEM. This accounts for the typical hardening behavior of unbound aggregate
bases and softening nature of fine-grained subgrade soils under increasing stress states.
The results of the nonlinear finite element approach have been proven to be consistent with
the deflections obtained from NDT of pavements.

SOFTSYS program was developed for computers running on MS Windows
environment. It is intended to operate both in Windows XP and Windows Vista operating
systems. Adaptation to newer operating systems that may appear on the market in the
future can be assured with very minor modifications.

SOFTSYS was developed in MATLAB® using sequential programming (SP)
principles. The coding was done using MATLAB 2007b. Some additional components such
as Fortran executable were also used in the program. However, MATLAB® program is not
required to run SOFTSYS since the executable file is included with the SOFTSYS
installation package.

HARDWARE REQUIREMENTS

An Intel Pentium Il processor with 667 MHz clock speed is suggested as the
minimum for practical purposes. Naturally, the older the system, the longer it takes to setup
the software or to run analyses. Therefore, it is also suggested that users have recently
manufactured processor to have agreeably faster operations with the software. In addition, a
minimum of 512 KB of randomized memory (RAM) is recommended for effective use of the
software. There is no specific requirement for graphics processor.

PROGRAM SETUP

SOFTSYS software is distributed as two zipped files;
* MCRInstaller.zip (Includes MATLAB Compiler Installer)

e SSS.zip (Includes SoftSys Files)

The user must unzip both files. Each file needs to be setup separately. First,
MCRInstaller file should be unzipped into any existing folder. Then, “MCRInstaller.exe” file
should be clicked to open and install the software.



Using the MCR Installer

1. When the MCR Installer wizard appears, click Next to begin the installation. Then, click
Next to continue.

2. In the Select Installation Folder dialog box, specify where you want to install the MCR and
whether you want to install the MCR for just yourself or others. Click Next to continue.
(Note the Install MATLAB® Compiler™ Runtime for yourself, or for anyone who uses this
computer option is not implemented for this release. The current default is Everyone.)

3. Confirm your selections by clicking Next.

4. The installation begins. The process takes some time due to the quantity of files that are
installed. The MCRInstaller automatically:

Copies the necessary files to the target directory you specified;

Registers the components as needed;

Updates the system path to point to the MCR binary directory, which is
<target_directory>/<version>/runtime/bin/win32.
When the installation is complete, click Close on the Installation Completed dialog box to
exit.

The second .zip file (SSS.zip) needs to be installed after MCRInstaller is set up in the
computer. It contains the all the files necessary to run SOFTSYS.

INSTALLING SOFTSYS FILES

1. The user needs to create a folder named “SSS”, which stands for SOFTSYS, under the
main directory C (or whatever letter designates the hard drive directory in the personal
computer);

2.The installation directory should be “C:\SSS”. When all the files are uninstalled, the
appearance of the directory becomes as follows:

C\ASSS\vl 0\ ANN
C:\SSS\vl 0\ Code
C\SSS\vl 0\FWD
C:\SSS\vl 0\Results

3. The user should not change the content of ANN, Results and Code directories. Otherwise,
SOFTSYS may not run properly.



CHAPTER 2: RUNNING A SAMPLE SOFTSYS ANALYSIS

1.Assume that a sample FWD data file (IP-SYNTH_Road_Data.xlIs) is already available
under “C:\SSS\v1_O\FWD\FDP\IP-SYNTH" directory (Figure 2-1) (A sample file, “IP-
SYNTH_Road_Data.xlIs”, is provided in the setup file). If a different road needs to be
analyzed, then a different file with the same format needs to be saved in the following
directory “C:\SSS\v1_O\FWD\FDP\EXAMPLE-FILE\EXAMPLE-FILE_Road_Data.xIs” This
is a MS Excel file and the user needs to modify it to analyze a different FWD file. It is
recommended that the user should keep the same format while modifying the numbers.
The column headings clearly explain the variable names. Number represents the station
number and E_{AC} and E_{RI} are the user estimates of the asphalt concrete and
subgrade moduli for the full depth asphalt pavement analyzed. If the user does not have
typical estimates, these columns should be entered 0 for SOFTSYS to run. The columns
D_{0}, D_{12}, D_{24}, D_{36} are the FWD deflections.

2. There are two files under Code directory: “settings.ini” and “sss_loader.exe”. Settings file
should not be modified for SOFTSYS to run properly. The SOFTSYS executable file
“sss_loader.exe” needs to be clicked on to run SOFTSYS.

3. When the executable “sss_loader.exe” is clicked, the program asks for a number to initiate
the backcalculation analyses (Figure 2-2). It is recommended that the same number
should not be entered in two consecutive analyses.

4. The program automatically determines the location of files based on the date and time of
analysis and prints them on the screen (Figure 2-3). The combination of time and date
including years will be used as folder name where the results will be stored. Then, the
analyses start for all FWD stations available in the MS Excel file. The generations, i.e.,
iterations, are shown on the screen (Figures 2-4 to 2-6).

5. The progress of SOFTSYS is shown on the screen when the analysis of all FWD station is
finished successfully (Figure 2-7).

6. The graphical results are shown on the screen (Figures 2-8 to 2-10) and saved under the
results folder.

7. The results will also be stored in the MS Excel (“IP-SYNTHRoad.csv”) file found in results
directory (Figure 2-11).
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Figure 2-1. Appearance of the FWD file to be analyzed.

e CAS55W1_Mcode\sss_loader.exe
Enter integer to seed random generator <O to 4274967295053454

Figure 2-2. Entering a number to seed random number generator.




C:585\w1_Ohvcode\sss_loader.exe

Enter integer to seed random generator <A to 429496729533454
Enter Road Name IP-SY¥YNIH_

Figure 2-3. Dynamic folder name definition.

C:AS55\Ww1_hcode\sss_loader.exe

Enter integer to seed random generator (B to 429496729533454
Enter Road Name IP-5YNTH

The results are stored in the following directory:
C=x885vl _Bxresults~FDP~PH2~ANN~SGA~ILLI FAUE~FWD4~

FDP_PHM2_SGA_p=1000_cpB858_npB@l@_scBl_ccBl_scHaB@g_BA16_8168%
18—-September—@8 18—48-48

Analysis Started for

Station Mumbher :1

Figure 2-4. Progress of SOFTSYS through generations.




C:585\w1_Ohvcode\sss_loader.exe

Enter integer to seed random generator <A to 429496729533454
Enter Road Name IP-SY¥YNTH

The resultz are stored in the following directory:
C:nEE85wwl _Bvresults FDP-PM2~ANN~SGA~ILLIPAVE~FUD4
FDP_PHM2_SGA_p=18608_cpf858_npA@l1@_scBl_ccBl_scHaBB8_B18_810-
18—September—@8 18—-40-48

Analysis Started for

Station Mumber

Generetion i

Bezt Fitness A.72176

Target FUD 16.98 168.38 .78
Calculated FUD 17.28 108.42 5.73

Figure 2-5. Initial progress of SOFTSYS.

C:AS55\Ww1_hcode\sss_loader.exe
Calculated FUWD 16.79 18.38

Generetion 18
Best Fitness B.993a@
Target FUWD 16.98
Calculated FUWD 16.°79

Generetion 17
Best Fitness B.993a@
Target FUWD 16.98
Calculated FUWD 16.99

Generetion 28

Best Fitness B.99233
Target FUWD 16.98
Calculated FUWD 16.87

Analysis Started for
Station Number =

Generetion
Bezt Fitnezs
Target FUWD
Calculated FUD

Figure 2-6. Finishing of analysis only one station in SOFTSYS.




C:585\w1_Ohvcode\sss_loader.exe

Target FUWD
Calculated FUD

Generetion
Bezt Fitness
Target FUD
Calculated FUD

Generetion
Bezt Fitness
Target FUD
Calculated FUD

Generetion
Bezt Fitness
Target FUD
Calculated FUD

Analyzes successfully finished

Figure 2-7. Finish of analysis in SOFTSYS.
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Figure 2-8. Graphical comparison of estimated results vs. calculated ones for thickness.
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Figure 2-9. Graphical comparison of estimated results vs. calculated ones for asphalt
concrete layer moduli.
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Figure 2-10. Graphical comparison of estimated results vs. calculated ones for subgrade
layer moduli.
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1 GeneratioBest_Fit  Max_Fit  Ave Fit  Min_Fit  Sum_Fit t_{&C} E_fach E_{RI} D_{0} D_{12} D_{24% D_{36}
2 20 0,9333 0,9933 0.5283 0.0042 528,26 7.4 1.25E+05 10404 16.87 10,34 5,68 3.32
3 18 0.9771 0.9771 0.5423 0.0055 542,32 9 1.17E+05 11814 18.38 9.82 5.13 2,92
4 18 0.9961 0.9961 0.5629 0.0035 962,89 9.5 1.99E+05 9939 14,85 9.4 3,67 3.5 |_
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Figure 2-11. Appearance of results file.
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