

IAPA Annual Conference

I.C. for HMA 03/13/2017

Intelligent Compaction for HMA

- Keys to success
- What is Intelligent Compaction?
- Why use Intelligent Compaction?
- Systems
- Options
- Benefits
- Weaknesses
- Data. Lots and Lots (probably some sublots) of Data.

Keys to Success (Rebecca Embacher, MnDOT)

- No one should be asked to bid on something they don't understand
- Staged implementation, learn to walk before you run
- Collaboration between Agency and Contractors
- Agency flexibility during the early stages
- Get local Equipment and Technology dealers involved early
- Work with Equipment and Technology Dealers to involve factory SME's when needed
- Get familiar with VETA

Contractor Collaboration

- Meeting Platforms
 - Asphalt Pavement Quality and Technology Committee (3-4 times / year)
 - Specification Committee (1-2 times / year)
 - Association of General Contractors (2 times / year)
 - Ad-Hoc Committees (as needed)
 - Minnesota Asphalt Paving Association (all meeting platforms)
 - Workshops
 - Training
- Discussions
 - Specification development
 - Implementation Schedules
 - Debriefings
 - New technologies, practices & opportunities
 - Solutions to existing problems
 - Needs / Resources

What does Intelligent Compaction do?

- Displays and records:
 - Pass count of a roller
 - Can be used on entire roller train
 - Breakdown, intermediate, finish
 - Temperature of asphalt surface
 - Operator notified if mat temperature is outside of user-defined range
 - <u>CMV</u> (Compaction Meter Value)
 - CMV is an indication of mat stiffness and is recorded using an accelerometer
 - It is not density

- To solve a problem
 - If there is no problem to solve, we have an answer in search of a question.
- Does anyone have problems with Compaction?
 - Yes: We'll move on with the presentation.
 - No: Thank You and have a nice day! See you at the bar!

- To achieve the desired compaction the compactor operator needs to achieve a specified pass count target at a specified speed (or ipf) within a specified temperature range.
 - The problem; No one can effectively keep track of all these things all day every day?

- Common issues we see today in the field:
 - The operator can easily lose track and the job becomes guesswork
 - Increasing speed to catch up with the paving train
 - Are there enough compactors on site?
 - Machines running "tandem"
 - You got that covered while I was getting water, right?
 - The supervisor cannot monitor pass count performance and cannot verify accurate completion of the compaction job
 - Inconsistent density
 - Under compaction
 - Over compaction
 - Outlying cores
 - Penalties, missed bonuses, premature road failure and legal issues

- Beneficial for all operators, especially inexperienced operators/night work
- Ensures proper mat compaction
- Ensures compaction efforts during temp windows
- Financial incentives
- Implementing IC Technology gives us actionable data
 - Real Time Data
 - Historical Data

Benefit: Pass Count Mapping

- To achieve the desired compaction the compactor operator needs to achieve a specified pass count target at a specified speed (or ipf) within a specified temperature range.
 - Operator doesn't have to guess
 - Display gives operator real time pass count
 - Ensure uniform compaction efforts
 - Ensure complete coverage

Pass Count Mapping Avoid over or under-compaction

- Displays pass count maps, allowing operator to track where pass count target has been met
- Pass count mapping allows you to monitor the number of passes over an area and adjust your effort

Benefit: Temperature Mapping

- To achieve the desired compaction the compactor operator needs to achieve a certain pass count target at a specified speed (or ipf) within a specified temperature range.
- Common issues we see today in the field:
 - Rollers too far behind the paver, mat too cool
 - Rollers in the "Tender Zone"

Temperature Mapping Know exactly where to be for ideal compaction timing

- When installed with two optional IS310 Infrared Sensors, CCS900 maps the surface temperature of the mat
- Displays temperature maps, allowing operator to judge his time window for compaction across the surface

Benefit: CMV Mapping

- Ensure proper vibe state during compaction effort
- Ensure proper machine settings (freq and amp)
- Knowledge of results of compaction effort
- Historical Data

CMV – Compaction Meter Value Understand your compaction

- CMV is an accelerometer based sensor that gives the operator an indication of the stiffness and consolidation of the material below the roller
- The value may be correlated to the accepted static density test being used on the project
- Takes into account the level of compaction taking place with respect to the vibratory effort, roller size, weight, speed, vibratory frequency and amplitude of the drum

Benefit: Historical Data

- Though it is an "After the fact" analysis, historical data can help us improve our work flow and our final product by helping us to plan intelligently.
- Proof that work was performed as per specification.
- Data can be analyzed to determine root cause of some problems.

What is being specified in IC?

- Common Specifications:
 - Pass count of vibratory roller
 - Have seen requirements for entire roller train
 - Temperature mapping of asphalt mat
 - Typically, RTK precision is required
 - Coordinate systems vary by project
 - In US, VETA output is expected
 - CMV often specified, although does not usually affect pay

Systems

- Pass Count, Temperature Mapping, ICMV
 - Atlas Copco (Dynapac); Dyn@lyzer
 - Bomag; Asphalt Manager
 - Caterpillar; Cat Compaction Control
 - Hamm/ Wirtgen; HCQ
 - Sakai; Compaction Information System2
 - Volvo; Volvo IC w/Density Direct
 - Topcon; C-63 Intelligent Compaction System
 - Trimble; CCS900 Intelligent Compaction System

Accelerometer

Weaknesses

- Too many variables. Temperature, thickness, depth of reading, mix design, speed, direction, amplitude, frequency.
- Cannot read density. Density=mass/volume. An accelerometer knows neither of those.
- A reasonable correlation can be made between Density and "stiffness" (CMV) in a very controlled situation. Real world paving and compaction can't be controlled that tightly.
- Accelerometer reads ~3-10' deep. We only care about top layer.
- Accelerometer will indicate a stiff mat regardless of its density once the mat has cooled.

Accelerometer

- Benefits
 - Can help us understand underlying deficiencies (Weak areas)
 - Plan for future rehabilitation
 - Lets us understand vibe state, amplitude, and frequency
 - Can give us a reasonable understanding of density if we control the other variables

GNSS Accuracy

- Differing levels of GNSS Accuracy
 - Differential GNSS using SBAS (WAAS) ~3' accuracy
 - UTM Coordinate System
 - Not repeatable
 - RTK GNSS .1' accuracy
 - State Plane, Arbitrary Localization, you pick.
 - Pass to pass repeatability
 - Navigate to problem areas
 - Utilize 3D Design if available
 - Requires a correction stream; Local Base or VRS (CORS)

Temperature Sensors

- Temperature Sensors
 - Center Mounted Sensor; Always reading a "wet" mat
 - Front and Rear Mounted Sensors; Always reading a "dry" mat

Other Options

- Map Sharing
 - Operators of multiple machines share mapping information.
 - Several manufacturers offer map sharing
- Web based data
- Veta (Veda)
- In field reporting

What is Machine to Machine Mapping?

- Enables 2 or more machines to share mapping data in real time
- Machines able to work from a common updated map

Cloud Based Data

IC- Benefits

- Uniform efforts make more uniform cores.
- Operator has data required to make decisions and adjustments in real time.
- Supervisor has actionable data at his fingertips.
- Huge amount of Data!

IC- Weaknesses

- No Common Data Platform
 - Veta helps
- Continued disagreement regarding what is "important"
- FHWA definition of Intelligent Compaction is too narrow
 - Emerging technologies
 - Trans Tech PQI380 OTR (Coming Soon)
- Huge amount of data! Planning ahead will make the difference between success and failure.

What is VETA?

- VETA is a software for viewing and analyzing geospatial data
- Developed by The Transtec Group and sponsored by Minnesota Department of Transportation (MnDOT).
- VETA can import data from various intelligent compaction (IC) machines and MOBA PAVE-IR thermal profile data to perform viewing, editing/layering, point tests, and analysis.
- Download at intelligentcompaction.com

VETA

VETA

Non-Proprietary Software

- Low Bid Build
- Ease of Statewide deployment within State Agency

Database

- Construction/As-Built Record
- Correlate to Pavement Performance
- Compaction Curves Rolling Pattern
 Development

Specification Refinements

Support Multiple Technologies

- Intelligent Compaction
- Paver Mounted Thermal Profiling
- Ground Penetrating Radar
- Digital Test Rolling
- Spot Tests (Density, FWD, etc.)
- ...other geospatial technologies

Training / Field Support

- Effects of Paver Stops on Ride & compaction efforts
- Effects of Compaction Efforts on Uniformity
- ...and more

DIVIENSIONS

Instrumentation of Entire Rolling Train

S-xx.3.A.1

RANSFORMING THE WAY THE WORLD WORKS

Trimble.

Used for ease in mapping and data analyses in Trimble VisionLink Legacy & Veta

Specification	Definition
2353 (UTBWC) 2360 (HMA, WMA) 2365 (SMA)	Measurements for a given: Day Material Type Lift Centerline Offsets Direction of Travel (Divided Highway)
2215 (SFDR) 2331 (CIR)	Measurements for a given: • Material Type • Lift • Centerline Offsets • Direction of Travel (Divided Highway)

■ **③ Trimble**.

S-xx.3.F.

TRANSFORMING

S-xx.3.F.1

Standardized Naming Convention of Lots

- Creative naming conventions.
- Multiple names for one lot.
- Roller operators selecting different names.

Standardized Format*	Definition
ROUTE-MATL-L#-XXX-XXX	Undivided Highways (e.g., TH12-HMA-L1-CL-12R)
ROUTE-MATL-L#-XXX-XXX-DT	Divided Highways (e.g., TH12-HMA-L1-CL-12R-NB)

*Add an additional designation behind route for instances where more than one site calibration is needed within the project limits

(e.g., TH12N-HMA-L1-12L-CL, TH12S-HMA-L1-12L-CL)

RANSFORMING THE WAY THE WORLD WORKS

Lot Naming Standardization: Route

S-xx.3.F.1

ROUTE-MATL-L# -XXX-XXX

Acronym or Short Form	Full Name or Meaning
CR	County Road
CSAH	County State Aid Highway
MS	Municipal Street
MSAS	Municipal State Aid Street
TH	Trunk Highway

Replace ROUTE with route system followed by the route number (e.g., TH12)

TRANSFORMING THE WAY THE WORLD WORKS

S-xx.3.F.1

ROUTE-MATL-L# -XXX-XXX

Acronym or Short Form	Full Name or Meaning
L1	Lift 1
L2	Lift 2
L3	Lift 3

Ln	Lift n

PANTIFORMAND THE WAY THE WORLD WORKS

Lot Naming Standardization: Direction of Travel (Divided Highways) S-xx.3.F.1

ROUTE-MATL-L# -XXX-XXX-DT

Table 2016-6 (IC) - cont.		
Acronym or	Full Name or	
Short Form	Meaning	
NB	North Bound	
SB	South Bound	
EB	East Bound	
WB	West Bound	

TRANSFORMING THE WAY THE WORLD WORKS

Undivided Highway, Auxiliary Lane, 18-ft Asphalt Paving

Production Area	Lift	Lot ID
1	1	TH12-HMA-L1-18L-CL
	2	TH12-HMA-L2-18L-CL
2 1 2	1	TH12-HMA-L1-CL-18R
	2	TH12-HMA-L2-CL-18R

TRANSFORMING THE WAY THE WORLD WORKS

www.intelligentcompaction.com

Thank You!

• Questions?

If you want to discuss more, I will probably be at the bar with a glass of Bourbon in my hand this evening.