

TEXAS DEPARTMENT OF TRANSPORTATION

IMPACTS OF MIX
REJUVENATORS ON
PERFORMANCE

Ryan Barborak, P.E.

Asphalt Paving 42nd Annual Conference

Table of Contents

1 The Problem	3-5
2 Survey Results	6
Methods to Address Cracking	7
4 Rejuvenators	8-12
5 Four Step Design Process	13-21
6 TxDOT's Test Sections	22-27
7 Conclusions	28
8 Questions	29

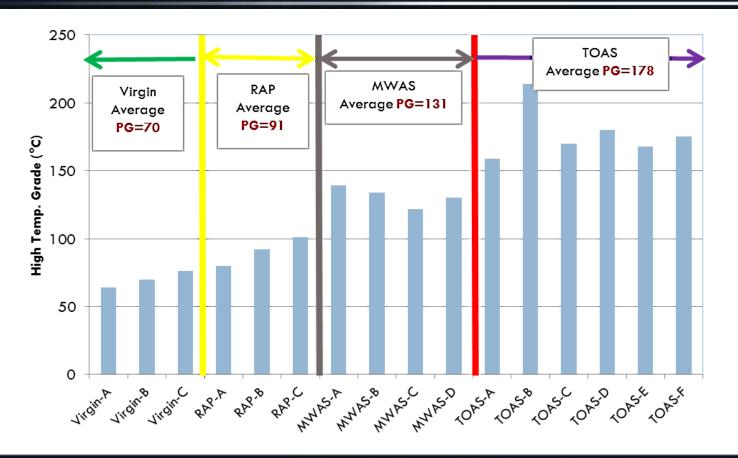
The Problem is...

Cracking

- Although there are many causes...traffic conditions, pavement structure, poor drainage, climate
- Focus is on how recycled materials are used
 - Reclaimed asphalt pavement (RAP)
 - Recycled asphalt shingles (RAS)

RAP and RAS

- Benefits
 - Economics
 - Reduced rutting
 - Environment
 - Source of aggregate



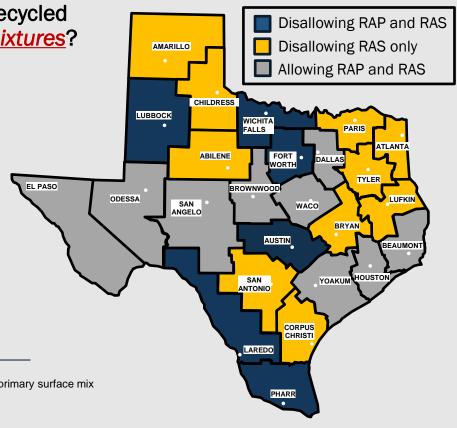
Disadvantages

- Stiffens mix
- Dry mixtures
- Mixes may be more prone to cracking

RAP and RAS PG Grade Determination

Recycled Materials Usage Statewide

What is the latest on recycled materials in <u>surface mixtures</u>?

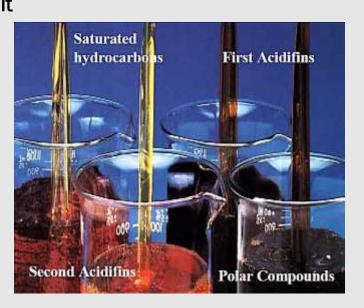

- No recycle
 - 6 districts
- No RAS
 - 16 districts
 - Additional 2 districts without RAS producers, 1 only 1 contractor uses
- Allow RAP
 - 19 districts
- Allow RAP and RAS
 - 9 districts

Notes:

LBB does not allow RAP in SMA which is their primary surface mix YKM most producers don't use RAS

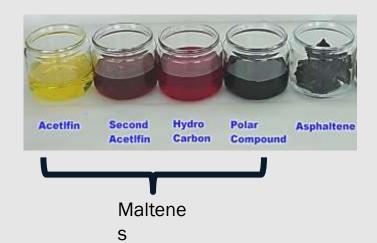
ELP no RAS producers

ODA no RAS producers

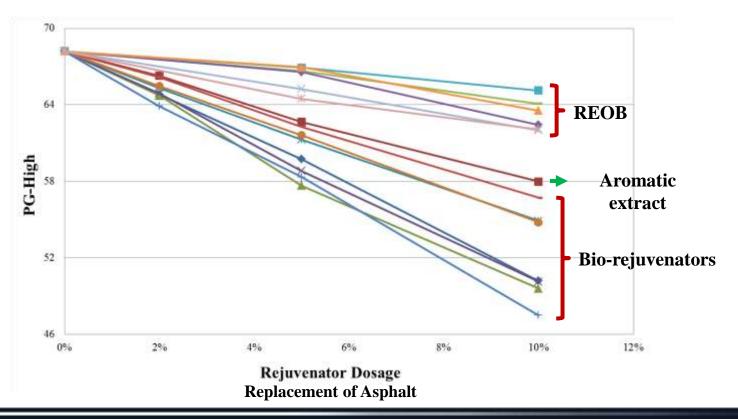


Methods to Address Cracking

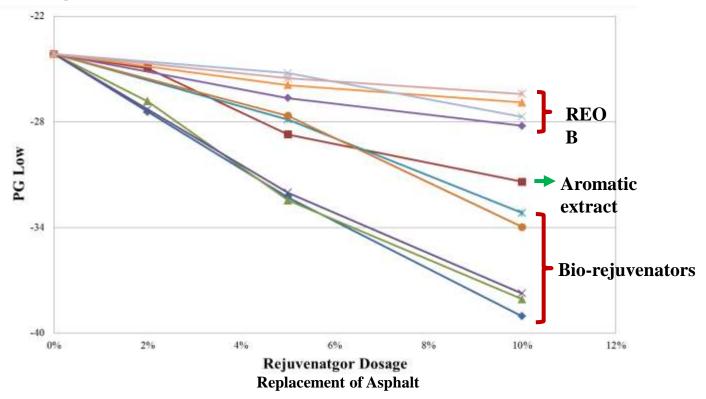
- Limit the quantity of RAP/RAS
 - Maximum recycled binder ratio
- Discount the effective asphalt content of RAP/RAS
 - TxDOT currently uses 100% effective for designing with RAP and RAS
- Use Superpave mix design procedure to allow more asphalt
 - TxDOT shift is towards using Superpave gyratory compactor
- Use softer virgin binders
 - PG 58-28
 - Consider lower temperature grade binders (e.g. PG XX-28, PG XX-34)
- Use a balanced mix design approach
 - Overlay test (cracking)
 - Hamburg wheel tracking test (rutting)
- Add rejuvenators to the mix


Rejuvenator Types

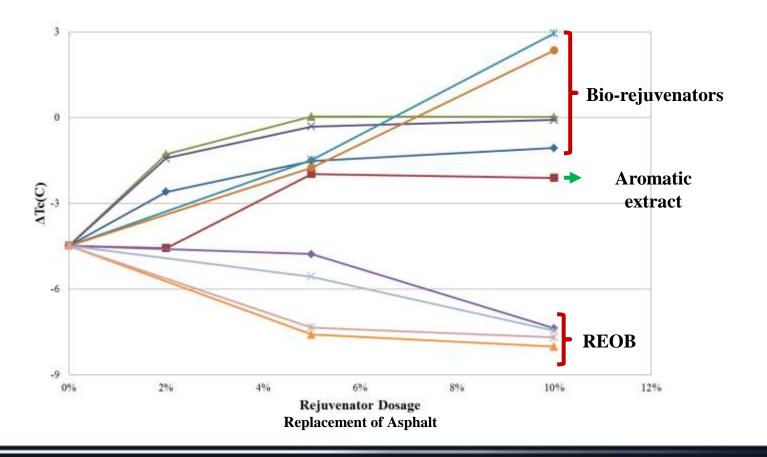
- Bio-based
 - Arizona Chemical, Green Asphalt
 Technologies, Ingevity, Cargil,
 Collabortive Aggregates,
 Sonneborn, Roadscience
- Aromatic extracts
 - HollyFrontier, Reclamite
- Re-refined waste materials
 - Re-refined engine oil bottoms (REOB)
 - Re-refined waste fast food vegetable oil


Rejuvenator Function

- Asphalt composition
 - Asphaltenes (insoluble, brittle, not affected by oxidation)
 - Maltenes (oily, flexible, affected by oxidation)
 - Aging <u>unbalances</u> the ratio of asphaltenes to maltenes
- Role of rejuvenators
 - Re-balance the ratio of asphaltenes to maltenes
 - Rheological effect:
 - Lowers high temp. PG grade (DSR)
 - Softens aged binders (BBR creep stiffness, S)
 - Improves relaxation (BBR m-value)

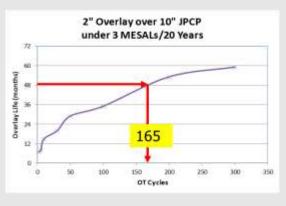

Rejuvenator Effectiveness

Virgin Binder PG 64-22



Rejuvenator Effectiveness

Virgin Binder PG 64-22

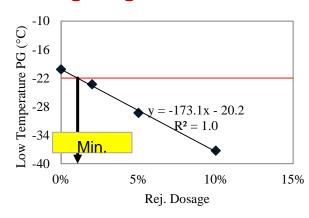

Bio-Based, Aromatic Extract, and REOB vs. ΔTc

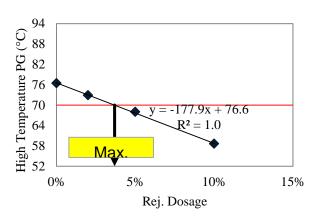
Four Step Design Process

- Step 1 Select rejuvenator
- Step 2 Select rejuvenator dosage range (binder testing)
- Step 3 Obtain balanced mix design data (mix testing)
- Step 4 Select dosage based on engineering judgement

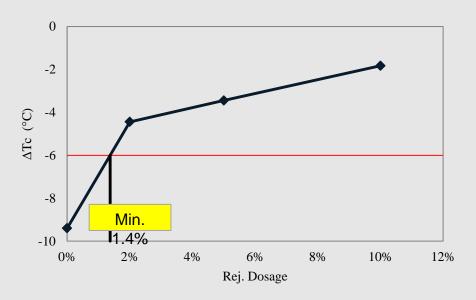
Step 1 – Select Rejuvenator

- Arizona Chemical/Kraton
- Manchester Pavement Solutions
- Ingevity
- Cargill
- Collabortive Aggregates
- Sonneborn
- Roadscience
- Texas Road Recyclers
- HollyFrontier
- Reclamite

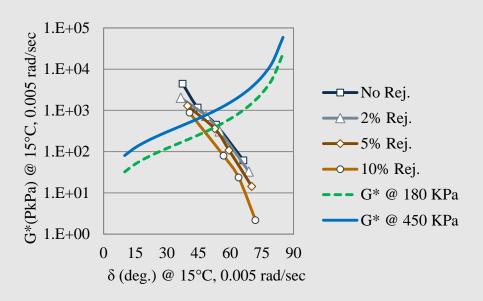

Three aspects:


- Rheological properties:
 - PG high grade requirement
 - PG low grade requirement
- Binder quality requirement
 - ΔTc requirement
- Aging characteristics of the blended binder
 - · Similar (or even better) aging characteristics of virgin binder

Example: FM468


- A new construction in Laredo District, Texas;
- Very heavy oil truck traffic
- Hot weather all year long

- Example : Original Binder Specified = PG 70-22
- Proposed: 30% RAP (PG 94 -10) and PG 64-22
 - Extract and combine asphalt from RAP with virgin binder at proposed binder ratios according to the mix design
- Add rejuvenator until DSR high temperature grade and BBR low temperature grade match original specified binder: PG 70-22
 - Dosage range = 1.1% 3.7%

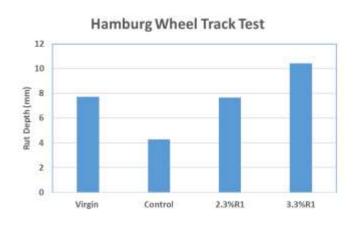


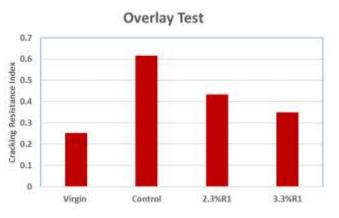
- Binder quality requirement: $\Delta Tc \geq -6^{\circ}C$
 - Minimum rejuvenator dosage: 1.4%

- Check aging characteristics
 - Glover-Rowe parameter
 - Goal is to match aging characteristics of virgin binder

Summary table for rejuvenator dosage range: binder testing

- R1: 1.8-3.7%


- R2: 1.7-4.8%


- R3: 2.6-3.6%

	Rejuvenator	Maximum	Minimum				
Blend		PG High =70	PG Low =-22	ΔTc=-5	Damage Onset for PG70-22	Significant Damage for PG70-22	Overall
70%PG64-22	R1	3.7%	1.1%	1.4%	0.7%	1.8%	1.8%
+ 30%PG94-10	R2	4.8%	1.7%	1.4%	1.0%	1.7%	1.7%
RAP	R3	3.6%	0.7%	1.6%	0.8%	2.6%	2.6%

Step 3 – Obtain Data from Balanced Mix Design

- Perform Hamburg wheel tracking tests and Overlay tests on mix produced in the laboratory
 - Overlay requirements are determined by Overlay program (TxACOL)
 - New constructions are determined by TxME pavement design
 - Cracking resistance index is project specific (traffic, climate, pavement structure, etc.)

Step 4 – Select Rejuvenator Dosage

- Use data gathered from Steps 1-3 to select rejuvenator dosage
 - Use engineering judgement to decide actual dosage
 - Higher rejuvenator dosage in areas more prone to cracking
 - Lower rejuvenator dosage in areas less prone to cracking
 - Factors include:
 - Traffic conditions
 - Interstate/high traffic levels
 - » May consider lower rejuvenator dosage
 - FM roads with less traffic levels
 - » May consider higher rejuvenator dosage
 - Pavement structure
 - Climate

Test Sections

Test sections

- Tyler District, SH31, included 5 test sections, 6/14/2014
- Laredo District, FM468, included 5 test sections, 9/15/2015
- Houston District, FM1463, included 4 test sections, 7/16/2016
- San Angelo, US67, included 5 test sections, 4/12/2017

Tyler District – SH31

- Dense Grade Type C Mix Designs:
 - Virgin mix, PG 70-22, AC = 4.5%
 - 10% RAP, 5% RAS, PG 64-22, AC = 4.6%
 - 10% RAP, 5% RAS, PG 64-22, 2.6% RO1, AC = 4.5%
 - 10% RAP, 5% RAS, PG 64-22, 3.7% RO2, AC = 4.7%
 - 10% RAP, 5% RAS, PG 64-22, 2.0% RO3, AC = 4.9%
- Reflective cracking was observed on all sections
- After 2.5 years, cracking was similar with all sections

Tyler District – SH31

- Lessons learned
 - Dosage of rejuvenators may have been too conservative
 - Two lift overlay was constructed over jointed concrete pavement
 - Crack attenuating mix (CAM) was placed before winter and had previously cracked prior to placing test sections
 - Solution Construct both sections at the same time

Laredo District – FM468

Superpave Type C Mix Designs

- Virgin mix, PG 70-22, AC =6.1%
- -30% RAP, PG 64-22, AC = 6.3%
- -30% RAP, PG 64-22, 3.0% R1, total AC = 6.3%
- 30% RAP, PG 64-22, 3.2% R2, total AC = 6.3% (accidentally removed)
- -30% RAP, PG 64-22, 2.2% R3, total AC = 6.3%

No cracking; no visible rutting, although heavy trucks

Oct. 9, 2017

Houston District - FM1463

- Dense Grade Type D Mix Designs
 - 17% RAP, 3% RAS, PG 64-22, AC = 5.2%
 - -17% RAP, 3% RAS, PG 64-22, 3.5% RR1, AC = 5.2%
 - -17% RAP, 3% RAS, PG 64-22, 4.0% RR2, AC = 5.2%
 - -17% RAP, 3% RAS, PG 64-22, 7.5% RR3, AC = 5.2%
- Overall good: No rutting but a few fine longitudinal cracks were spotted on Jan. 8, 2018.

San Angelo District – US67

Dense Grade Type C Mix Designs

- 13% RAP, PG 64-22, AC = 5.3%
- -21% RAP, PG 64-22, AC = 5.3%
- 21% RAP, PG 64-22, 3.0% RRR1, AC = 5.3%
- 21% RAP, PG 64-22, 3.0% RRR1, AC = 5.3%
- 21% RAP, PG 64-22, 11.0% RRR1, AC = 5.3%

No rutting; no cracking

July 3, 2017

Conclusions

- Rejuvenators have been shown to improve cracking resistance of RAP/RAS mixes in the laboratory
- Use of rejuvenators may impact lab molded density and compaction effort in the field
 - Consider changing lab molded density requirements/decrease number of gyrations
 - Roller patterns will need to be adjusted (less compaction effort)
- Too early to determine their effectiveness in the field
 - No problems were encountered with meeting air void requirements
 - Difficult to know cost savings
 - Performance based (more service life)
 - Will allow use of more recycled materials
- Continuation of monitoring field test sections is needed

Questions

March 12, 2018

GAINING PERFORMANCE WITH RECYCLING AGENTS

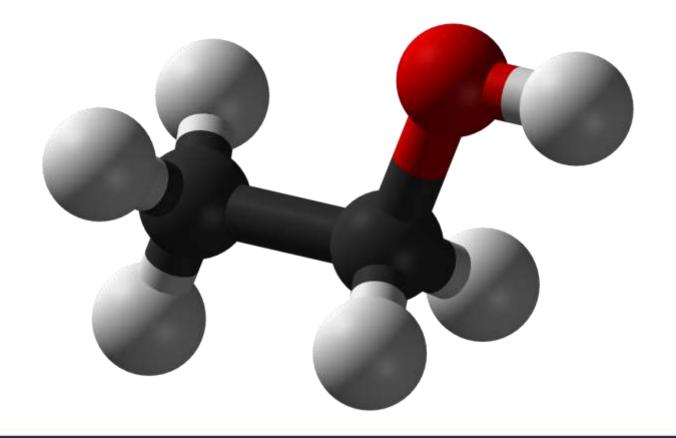
Grant Wollenhaupt
Vice President of Strategy & Innovation
Superior Bowen

Benchmarking

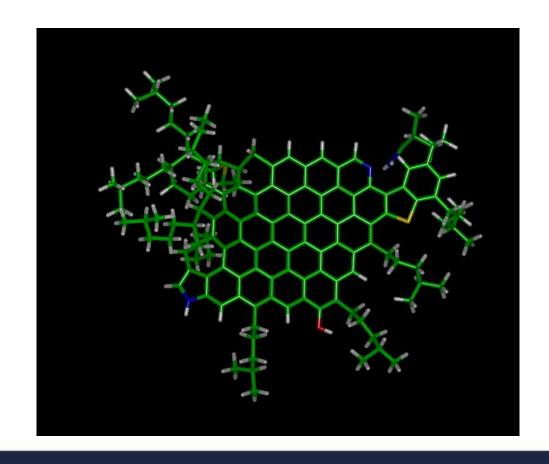
Let's Set Some Realistic Expectations Here

Objective

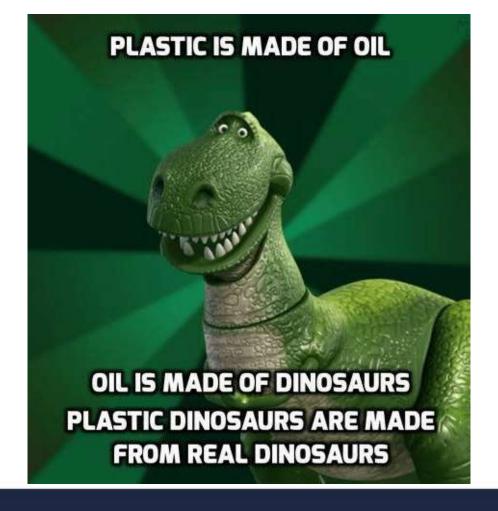
TO LEARN THE BASICS or JUST ENOUGH TO ASK QUESTIONS

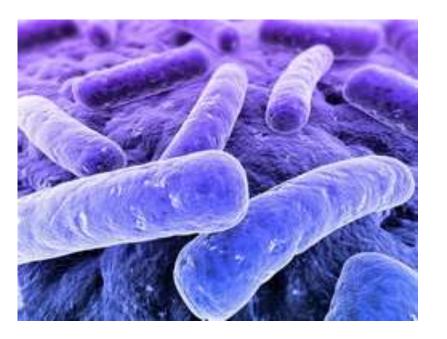


Oil


Totally not a politically loaded word...

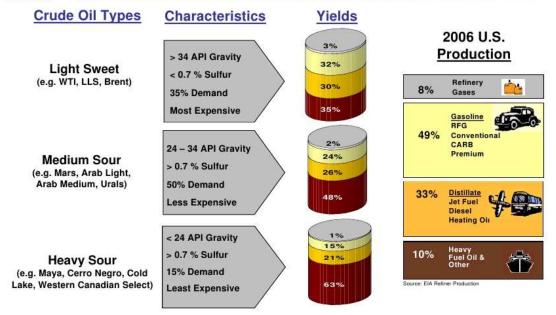
Oil



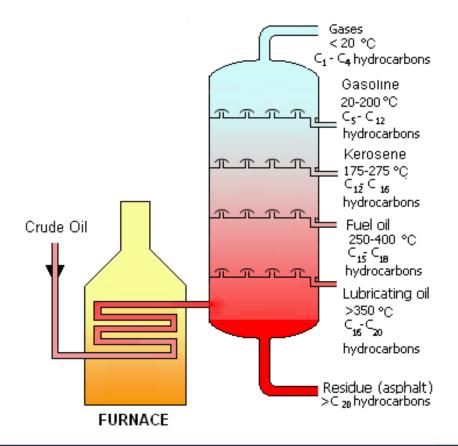

Oil?



Oil



What's in a Barrel of Crude Oil?



Refineries upgrade crude oil to higher value products

Oil

Binder is Different...

- Performance Grading: 64-22, 58-28
 - Think of it more 64 -22
- Expanding the PG range: 64-28, 70-22, 58-34
 - That's modification

Modifiers

To accent or augment performance

Cost savers

- Performance
 - Stripping (TSR, Hamburg)
 - Rutting (Hamburg)
 - Cracking (SCB, DCT, TSRST)
 - Aging
- Cost
- Environmental Benefit

- Stripping
 - Hydrated Lime
 - Liquid Anti-Strips
- Rutting
 - SBS
 - GTR
- Recycled Materials
 - RAP
 - RAS

- Pig Sh*t
- Plant-Based
 - Tall Oil
 - Vegetable Oil
- Petroleum Based
 - Flux
 - Fuel Oils
 - REOB

T5RC with 0% RAP PG78-20

T5RC with 27%RAP/3% RAS PG90-12

Evaluation

You Can't Just Swipe Left or Right for Looks

That's a Tinder Joke, Folks

- Safety
 - Environmental
- Ease of Use
- Performance
- Cost

Nobody Likes Melting

Devastatingly Deadly to Aquatic Life

How to Get the Sauce on the Rocks

An Argument Against Old Cucumbers

You Have to Start Somewhere

	orig	RTFO	PAV	RTFO Effect	PAV Effect	Total Age Effect
Virgin 64-22 8-30-12	-30.39	-29.52	-24.86	3%	16%	18%
Virgin w/ 5% Product A	-34.24	-32.41	-29.11	5%	10%	15%
Virgin w/ 8% Product A	-36.23	-35.01	-31.51	3%	10%	13%
Virgin w/ 10% Product A	-38.32	-36.17	-32.41	6%	10%	15%
Virgin w/ 5% Product B	-34.90	-33.22	-30.11	5%	9%	14%
Virgin w/ 8% Product B	-37.10	-35.31	-32.68	5%	7%	12%
Virgin w/ 10% Product B	-39.12	-36.79	-34.76	6%	6%	11%
Virgin w/ 5% Product C	-36.69	-34.54	-31.89	6%	8%	13%
Virgin w/ 8% Product C	-40.73	-36.92	-34.77	9%	6%	15%
Virgin w/ 10% Product C	-45.29	-37.85	-35.91	16%	5%	21%

When You Don't Want What You Ask For

T5RC with 0% RAP PG78-20

T5RC with 27%RAP/3% RAS PG90-12

When You Don't Want What You Ask For

T5RC with 0% RAP PG78-20 T5RC with 27%RAP/3% RAS PG90-12

When You Don't Want What You Ask For

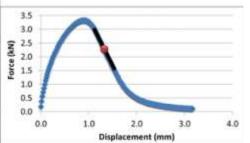
T5RC with 0% RAP PG78-20 T5RC with 27%RAP/3% RAS PG90-12

T5RC WITH 27%RAP/3% RAS PG75-23 T5RC WITH 25%RAP/5% RAS PG81-22

Performance Testing

All for Naught Without a Proper Baseline

Hamburg



Illinois Flexibility Index Test IFIT

Disc-Shaped Compact Tension Test DCT(T) SS

Obligatory Data Page

	Mix Type						
	190 C	125 SMA I-435	095 SMA I-435	T5 City Overlay 40R	T5 City Overlay 60R		
Virgin AC PG	64-22	64V-22 GTR	64V-22 GTR	52-34	58-28		
Virgin AC %	3.50%	6.50%	6.00%	2.60%	1.50%		
Additive %	0.00%	0.00%	0.00%	0.00%	0.20%		
Recycle AC %	1.50%	0.00%	0.00%	2.00%	2.90%		
Total AC %	5.00%	6.50%	6.00%	4.60%	4.60%		
Air Voids	3.00%	4.80%	4.80%	2.70%	2.00%		
Rut Depth (mm)	3.19	4.13	6.88	12	10		
Stripping Inflection	NA	17,761	11,271	10,211	9,086		
Passes	20,000	20,000	20,000	12,662	16,112		
Flexibility Index	< 1	10	3	3	3		
DCT (J/m2)	320	714	626	347	446		
Continuous Grade	NA	NA	NA	72.1-26.1	70.8-27.3		

	190 C	095 SMA I-435	125 SMA I-435	T5 City Overlay 40R	T5 City Overlay 60R
Hamburg	1	3	2	5	4
DCT	5	1	2	4	3
IFIT	3	2	1	2	2
Average	3	2	1.7	3.6	3
Price	3	5	4	2	1

Elementary Grant: The road to hell is paved with good intentions

High School Grant: The road to heaven is also paved with good intentions

College Grant: The vast majority of roads are paved with good intentions

Contractor Grant: Good intentions are low caliber roadbuilding materials

Resources

- AAPT
- NCAT
- NAPA, APA, SAPAs
- CMTG (Kansas City)
- Manchester Pavement Solutions

Questions?

Grant Wollenhaupt
Superior Bowen
gwollenhaupt@superiorbowen.com