

I-FIT Implementation

Lessons Learned

Illinois Flexibility Index Test

- IL Modified AASHTO TP124
- Conditioning
 - $-25^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ for 2.0hrs ± 10 min.
- Load Line Displacement Loading Rate
 - 50mm/min

Illinois Flexibility Index Test

- IL Modified AASHTO TP124
- Conditioning
 - $-25^{\circ}\text{C} \pm 0.5^{\circ}\text{C}$ for 2.0hrs ± 10 min.
- Load Line Displacement Loading Rate
 - 50mm/min

IDOT I-FIT Implementation Timeline

IDOT CBM Began Testing Mixtures Using I-FIT Procedure

IDOT I-FIT Pilot Projects

IDOT I-FIT Uniformity **Studies Began**

UIUC I-FIT Research Study #2 Began

#2 Will Be **Completed**

I-FIT on all

Interstates

UIUC I-FIT

Research Study

2019

2012

2013

2014

2015

2016

2017

2018

UIUC I-FIT Research Study

UIUC HMA Field Research **Study Began**

UIUC I-FIT Research Study #1 **Completed**

All IDOT District I-FIT Machines Online

UIUC HMA Field Research Study Completed

Lesson 1 – Geometry

Notch

- Goals of Notch
 - Thin, Straight, Appropriate Length
 - Produces singular crack

Notch

- Goals of Notch
 - Thin, Straight, Appropriate Length
 - Produces singular crack
- Notch/"Starter Notch" in Metal Fracture Testing (ASTM E399)
 - Used to create stress amplification for fatigue precracking
 - Not easily re-created in HMA

Notch Thickness Criteria

- Notch Width Initial Criteria
 - -1.50mm ± 0.05 mm
- Notch Width Current Criteria
 - ≤ 2.25mm

Limiting Air Void Range

- Wide ranges (3 to 10%) in air voids affect HMA fracture response
- Air Voids Initial Criteria
 - $-7.0\% \pm 0.5\%$
- Air Voids Current Criteria
 - $-7.0\% \pm 1.0\%$
 - Matches Hamburg Wheel Criteria

Barry, M.K. (2016) An Analysis of Impact Factors on the Illinois Flexibility Index Test. Master's Thesis. University of Illinois at Urbana-Champaign.

Gyratory Height

AASHTO TP124 allows both 160 and 115mm tall gyratories

Lesson 2 – Mixture Design Variables

IDOT I-FIT Database

- Database Contents
 - Approximately 1900 test sets evaluated
 - Typically, 4 specimens tested per mixture
 - Average of the closest 3 specimens used in analysis (IL Mod. AASHTO TP124)
 - Includes CBM and District Test Results
 - Analysis Breakouts
 - Total AC Content
 - Virgin AC Content
 - Design VMA
 - ABR
 - Test Specimen Air Void Content
 - Specimen Type (Lab/Plant/Cores)
 - Polymer Modification
 - Virgin Asphalt Binder Low Temperature Grade
 - Test Specimen VMA
 - NMAS
 - Volume of Effective Binder (VBE)

Plotting Methodology

- FI vs. Variable (Ex. Cores with/without SBS polymer modifiers)
- Bar values represent Average FI (Trimmed Mean (FI))
- Error bars represent one average standard deviation (σ) on either side of the trimmed mean

$$- COV(\%) = 100(\frac{\sigma}{\overline{FI}})$$

 Values at the bottom of each bar represent the number of test specimens represented in the trimmed mean

VMA

VMA

Asphalt Content

Asphalt Content

ABR

Lesson 3 – Field Projects

2016 IDOT I-FIT Pilot Projects

- 11 Projects Across All 9 Districts
- Mix Design and Production Testing, HWTT & I-FIT
- Pre-construction Distress Surveys Conducted
- Planned Annual Coring for I-FIT and Distress Surveys

2016 I-FIT Pilot Project Core Results

Lesson 4 – Recurrent Analyses

IDOT I-FIT Round Robins

- 2017 30 Machines: IDOT (10), WISDOT,
 INDOT, Private Labs (15), and ICT (3)
- 2018 34 Machines: Added MODOT, NCAT, and two IL labs
- 2019 35 Machines: Added Ohio and Oklahoma DOT's
- Approx. 12 Test Specimens/Round Robin/Machine
- Samples provided by IDOT CBM

I-FIT Databases

- Applicable at the State/District/Contractor Levels
- Partial List of Variables to Consider
 - Mix Design vs. Plant Production
 - VMA (Design/Production)
 - Binder Content (Design/Production)
 - Daily Production Variation
 - Long-Term Aging (Lab Oven Conditioning)
 - Binder Suppliers

I-FIT Database in QC/QA Package

Thank You for Your Attention!