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Abstract 

Improving riding quality, promoting sustainability and resiliency, and providing proper 

analysis procedures to maintain and predict the performance of existing structures have been 

profound goals of the transportation sector. Thermal cracks, also universally known as 

transverse cracks, are considered one of the most prevalent and critical forms of pavement 

distresses. Such cracks have been directly linked to various modes of pavement failure that not 

only adversely impact the performance and integrity of pavement structures and the riding 

quality experienced by typical road users. While recent studies have proven that the use of 

regression to explain thermal cracks is not an accurate representation to quantify distress, 

linear models are still commonly used in engineering practices. Using Long-term Pavement 

Performance (LTPP) data from 15 different sections located in the Midwest region of the US, an 

Artificial Neural Network (ANN) model was developed using MATLAB to predict the count of 

thermal cracks given the extracted input parameters: average annual temperature, annual 

average freeze index, 18 Kip ESAL, thermal conductivity, heat capacity, surface shortwave 

absorption, and coefficient of thermal contraction. The proposed ANN model divides the 

temperature and distress data: 70% training data, 15% testing data, and the remaining 15% 

validation data. The predicted and actual outputs were compared by calculating Root Mean 

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). Comparably, the results for 

7-9-9-1 ANN structure with TANSIG-LOGSIG transfer functions generated the closest thermal 

cracking estimate with RMSE of 0.089, MAPE of 0.10, and a regression coefficient (R)  of 0.94, 

which confirmed that the model was adequate to predict thermal cracks in the pavement.



 

 

 
3 

        

Introduction 

Low thermal cracking is observed as permanent fracturing, resulting from tensile stresses 

that form in the asphalt concrete pavement when exposed to cold temperatures or rapid 

temperature fluctuations (Jung and Vinson, 1992). Air temperature is inversely related to the 

contraction behavior of asphalt concrete mixtures. Thus, as temperature decreases, the 

contraction increases. During the cooling stage of asphalt concrete, the pavement’s propensity 

to contract and generate friction between the various pavement layers gradually induces 

thermal stresses (Zubeck et al., 1996). Low-temperature cracks will form at the surface if such 

thermal stresses are equivalent to the tensile strength of the asphalt mixture.  

The main thermal contraction cracking develops in a pattern transverse to traffic 

direction with a typical crack spacing ranging from approximately 4 to 100 meters in length 

(Kanerva, 1993). The seepage of water and fines in and out of the pavement is facilitated by the 

proliferation of low-temperature cracks throughout the pavement structure (Zubeck et al., 

1996). During winter, the localized thawing of the base and depression at the crack may result 

from the infiltration of deicing solutions into the base through the crack. Entering water freezes, 

yielding ice lenses that can cause vertical lipping at the margin. Pumping fine materials through 

the crack creates voids beneath the pavement structure, causing depression when loaded. The 

aforementioned factors lead to poor ride quality, shorter pavement service life, and high 

maintenance costs (Das, 2012). While low-temperature cracking is unavoidable in pavements 

constructed in cold climates, the asphalt industry has been moving towards performance-based 

methods to predict and evaluate the performance of existing and future pavement structures 

(Rahbar-Rastegar et al., 2018). 

Objective and Scope of Work 

This study intended to investigate the suitability of utilizing ANN to predict the number 

of thermal cracks of 15 pavement sections in the US Midwest region. The scope of the study 

entailed establishing a data collection methodology, developing a consistent ANN model, 

statistically analyzing the model’s predicted results, and comparing the ANN predicted thermal 

crack count to the LTPP actual thermal crack count.          
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Long-Term Pavement Performance Data Overview  

  In order to build an efficient ANN model, a proper data collection procedure must be 

established. For this research, thermal cracking and related pavement data were not directly 

measured. An extensive research project, Long-Term Pavement Performance (LTPP), was 

implemented in 1987 to regularly collect and inspect existing pavement performance data for 

more than 2,500 sections across North America and Canada (FHWA, n.d.). This program was 

initially funded by the Strategic Highway Research Program (SHRP) for the first 5 years of its 

initiation. Then, the Federal Highway Administration (FHWA) preserved supporting and 

managing the program. LTPP classifies the collected data into two primary class studies, 

General Pavement Study (GPS) and Specific Pavement Studies (SPS). Within each study, 

pavement performance is presented in 7 modules categorized as follows: Inventory, 

Maintenance, Monitoring (Deflection, Distress, and Profile), Rehabilitation, Materials Testing, 

Traffic, and Climatic.  

  Extensive research has been conducted on determining parameters required for thermal crack 

prediction. The attributes of asphalt elements, mix design criteria, loading time, mode, 

temperature, stress state, and age are all potential factors that influence the cracking propensity 

of asphalt mixtures (Rahbar-Rastegar 2017). This report will primarily discuss the effects of 

stress and temperature-related parameters on the quantity of observed thermal cracks. While 

developing a model with a large number of input parameters may produce accurate model 

results, limiting the input variables to those that tend to generate the greatest impact on the 

targeted result and sustain a relatively accurate representation of the target is more efficient. 

The ANN model used in this paper analyzes approximately 90 samples of data consisting of the 

following 7 input parameters: average annual temperature, annual average freeze index, 18 Kip 

ESAL, thermal conductivity, heat capacity, surface shortwave absorption, and coefficient of 

thermal contraction. LTPP data limitation is a factor that must be taken into consideration while 

choosing model parameters. While LTPP is a great source for obtaining pavement performance 

data, it does not provide consistent data collection times. Therefore, finding all the required 

data for a specific date may not be possible.  
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Artificial Neural Network Modeling Overview 

  Once accurate data has been obtained, it can then be loaded into an ANN model. ANN modeling 

is widely used in the industry to predict various empirically correlated processes with a wide 

range of independent variables, which may or may not impose the presence of prominent non-

linear relationships (Ammari, n.d.). While ANN can predict linearly correlated variables, it is 

more commonly applied to assess complex non-linear relationships. ANN is distinguished by its 

ability to imitate the cognitive effect of the human brain. It consists of numerous neurons 

arranged in one or more synaptically connected hidden layers, which tend to serve as the 

“nervous system” of the model. The hidden layers within the network can be connected linearly, 

logarithmically, exponentially, tangentially, etc. This can be considered by adding ANN transfer 

functions or manually transforming the data (Hossain et al., 2019). Figure 1. provides the ANN 

structure of the model used in this paper further to illustrate the concept of neurons and hidden 

layers. There are 7 parameters in the input layer, 2 hidden layers each consisting of 9 neurons, 

and a to be predicted one parameter in the output layer. The aforementioned ANN structure can 

also be represented as 7-9-9-1. 
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Figure 1. ANN Thermal Crack 7-9-9-1 Structure 

 

ANN Model Development  

ANN modeling is considered to be an iterative process that is purely based on a trial-and-

error mechanism. A research working paper written by Aymen Ammari,  titled “MATLAB Code 

of Artificial Neural Networks Estimation,” provided an ANN code that can be modified for 

various educational applications, which was used as a base and was tailored to meet the purpose 

of building an effective thermal cracking prediction model.  
The customized ANN Matlab script used to produce the presented thermal cracking results is attached 

to the Appendix of this report.  

Before developing an ANN code, a thorough understanding of the presented data and 

how it is statistically identified will provide a better insight into how the data should be 

embedded in the code. Figure 2. displays individual histogram graphs for each input and their 

relative impacts on the output. As can be inferred, the data is not normally distributed. The 

non-constant parameters are mostly right-skewed, which means that measures of central 

tendency (ex., mean, median, standard deviation, etc.) are being overestimated (Zack, 2021). 

Therefore, normalization of the data through “log transposition” will reduce the skewness seen 

in the probability distributions.  
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Figure 2. Histogram of each input parameter as compared to the output 

 

It is essential to consider certain aspects of ANN model development to generate an 

adequately functioning ANN code. First and foremost is having a proper dataset. A model with 

incorrect data will not produce expectable results. When introducing the data, input and output 

variables must be identified to ensure that Matlab interprets the data correctly. As part of the 

data interpretation process, the data should be divided into three sets: training, testing, and 

validation data. The most common form of data division, which is also used in this report, is the 

70% training, 15% validation, and 15% testing configuration (Hossain et al., 2020). As the 

network randomly assigns the ratios every time the code is run, introducing a “for loop” with 

stated minimum and maximum iterations will produce more consistent results and dramatically 

reduce the fluctuation seen in many ANN models. Increasing the number of maximum 

iterations will reduce the resulting MAPE. This, however, may not be ideal as it takes more time 
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to run more iterations. Therefore, a reasonable number of maximum iterations is considered 

efficient enough to produce good results without compromising the computation time needed 

to run the model.   

As previously mentioned, the determination of the number of neurons and hidden 

layer(s) is primarily based on trial and error, and the result proposing the least amount of error 

is selected. The line graph in Figure 3. represents the mean squared error (MSE) value associated 

with each number of neurons (nn) in the hidden layer(s). Note that the code developed for this 

research paper generates the same number of neurons in all hidden layers. The minimum MSE 

value found on the graph is at 9 neurons. This indicates that when the number of neurons in 

the hidden layers is set to 9, the model will produce a predicted thermal cracking count with the 

least error compared to the actual count of thermal cracks.  

 

Figure 3. Mean squared error (MSE) associated with different numbers of neurons 

in the hidden layer(s) 

To account for the non-linear relationship between the input and output parameters, 

transfer functions are introduced to create a relationship between the various neurons and 

assess their anticipated impacts on the output (Hossain et al., 2019). The most common ANN 

transfer functions that are used interchangeably to normalize the inputted data are hyperbolic 

tangent sigmoid (TANSIG), logarithmic sigmoid (LOGSIG), and pure linear (PURELIN). They are 

also numerically represented as: 
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𝑇𝐴𝑁𝑆𝐼𝐺(𝑥) =
2

1+𝑒−2𝑥
− 1            (1) 

𝐿𝑂𝐺𝑆𝐼𝐺(𝑥) =
1

1+𝑒−𝑥
              (2) 

𝑃𝑈𝑅𝐸𝐿𝐼𝑁(𝑥) = 𝑥              (3) 

The number of hidden layers and transfer functions was determined by following a procedure 

similar to that used to determine the number of neurons in a hidden layer. Increasing the 

number of hidden layers will not make the model more accurate. One hidden layer is typically 

used for linear/semi-linear relationships, while 2 - 3 hidden layers are commonly used for more 

complex non-linear models. Table 1. provides a summary of the calculated MAPE values 

associated with various transfer function combinations and numbers of hidden layers with 9 

neurons in each layer. Initially calculated, MAPE values were computed based on a maximum 

iteration of 20.  

Table 1. RMSE and MAPE of 1,2, and 3-layered network with various transfer 

function combinations 

Number of Hidden Layers Transfer Function Combination MAPE 

 
1 

- 0.25 
TANSIG 0.28 
LOGSIG 0.25 

PURELIN 0.36 

 
2 

- 0.29 
TANSIG-TANSIG 0.26 
TANSIG-LOGSIG 0.15 

TANSIG-PURELIN 0.29 
LOGSIG-TANSIG 0.29 
LOGSIG-LOGSIG 0.28 

LOGSIG-PURELIN 0.30 
PURELIN-TANSIG 0.28 
PURELIN-LOGSIG 0.31 

PURELIN-PURELIN 0.35 
TANSIG-TANSIG-TANSIG 0.26 
TANSIG-TANSIG-LOGSIG 0.22 

TANSIG-TANSIG-PURELIN 0.24 
TANSIG-LOGSIG-TANSIG 0.27 
TANSIG-LOGSIG-LOGSIG 0.28 

TANSIG-LOGSIG-PURELIN 0.23 
TANSIG-PURELIN-TANSIG 0.26 
TANSIG-PURELIN-LOGSIG 0.30 

TANSIG-PURELIN-PURELIN 0.27 
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LOGSIG-TANSIG-TANSIG 0.28 
LOGSIG-TANSIG-LOGSIG 0.28 

LOGSIG-TANSIG-PURELIN 0.31 
LOGSIG-LOGSIG-TANSIG 0.31 
LOGSIG-LOGSIG-LOGSIG 0.25 

LOGSIG-LOGSIG-PURELIN 0.28 
LOGSIG-PURELIN-TANSIG 0.27 
LOGSIG-PURELIN-LOGSIG 0.25 

LOGSIG-PURELIN-PURELIN 0.28 
PURELIN-TANSIG-TANSIG 0.27 
PURELIN-TANSIG-LOGSIG 0.23 

PURELIN-TANSIG-PURELIN 0.29 
PURELIN-LOGSIG-TANSIG 0.30 
PURELIN-LOGSIG-LOGSIG 0.33 

PURELIN-LOGSIG-PURELIN 0.28 
PURELIN-PURELIN-TANSIG 0.29 
PURELIN-PURELIN-LOGSIG 0.33 

PURELIN-PURELIN-PURELIN 0.36 

ANN Model Results and Analysis  

Based on Table 1. analysis, it was determined that a two-layered network consisting of 9 

neurons in each layer with a transfer function combination of TANSIG-LOGSIG produced the 

lowest MAPE value of 0.15. To achieve a more accurate model, the maximum number of 

iterations was raised to 500, and the same network was run. Increasing the number of iterations 

lowered the MAPE value to 0.10. Furthermore, a calculated RMSE value is equal to 0.089. The 

equations for MAPE and RMSE are shown below: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑𝑛
𝑖=1 |

𝐴−𝑃

𝐴
|             (4) 

𝑅𝑀𝑆𝐸 = √
∑𝑛𝑖=1 (𝐴−𝑃)2

𝑛
             (5) 

Where n = the number of data points, A = actual thermal crack count, and P = predicted thermal 

crack count. 

The regression analysis plot in Figure 4 compares the ANN predicted output to the LTPP 

measured the number of thermal cracks for each of the three datasets (training, testing, and 

validation) and all the data combined. Additionally, as seen in the figure, on average, a 

regression coefficient (R) of 0.93 is calculated, which suggests a strong correlation between the 

predicted and actual target.  Although the results have shown a good correlation, an absolute 
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correlation of R = 1 is not possible as other variables impact thermal cracking, not only 

temperature-related parameters.   

 

 

Figure 4. Predicted vs. actual count of thermal cracks for training, testing, 

validation, and all data 

Conclusion  

This study uses ANN modeling to use readily available LTPP distress and climate data to 

predict the count of thermal cracks for 15 sections in the Midwest region of the US. The data 

comprises average annual temperature, annual freeze index, 18K ESAL, thermal conductivity, 
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heat capacity, surface shortwave absorption, and coefficient of thermal contraction. The 

limitations introduced by LTPP data resulted in a limited available dataset to be used for 

modeling, randomly divided into 70% training, 15% validation, and 15% testing to obtain an 

adequate model structure of 7-9-9-1 with a transfer function combination of TANSIG-LOGSIG. 

This model presents an RMSE of 0.089, MAPE of 0.10, and a regression coefficient (R)  of 0.94. 

Based on the MSE graph, it was determined that the minimum MSE value exists when 9 neurons 

are used in both hidden layers. As a result of the ANN model, the analysis comparing the ANN-

predicted number of thermal cracks and the measured LTPP number of thermal cracks 

suggested that the model is representative and can be used to predict thermal cracking. 
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Appendix 

%% ANN Thermal Cracking Prediction Code  

% Reema Sweidan, 2022; 

***********************************************************************************

* 

%% Data Input and Preparation 

clc;clear;close all; 

in=xlsread('Input(1).xlsx');  % Input File 

out=xlsread('Input(1).xlsx');    % Output File 

data=[in out]; 

input=[1 2 3 4 5 6 7]; % Input Layer 

p=data(:,input); 

output=[8]; % Output Layer 

t=data(:,output); 
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p=p'; t=t'; 

% Normalizing/Transposing the Imported Dataset 

t=log(t+1); 

% Defining Training, Validation, and Testing Datasets 

trainRatio1=0.7; 

valRatio1=0.15; 

testRatio1=0.15; 

% Network Definition 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

nnn1=3;  % First Number of Neurons in the Hidden Layers 

nnnj=3;  % Jump in Number of Neurons in the Hidden Layers 

nnnf=9; % Last Number of Neurons in the Hidden Layers 

net1.trainparam.lr=0.1; 

net1.trainParam.epochs=500; 

% Training Network 

it=20; % Maximum Number of Iterations 

ii=0; % Initial Number of Iterations 

netopt{:}=1:nnnf; 

for nnn=nnn1:nnnj:nnnf  

   ii=ii+1; nnn; 

   net1=newff(p,t,[nnn nnn]);  % For more functions see: 'Function Reference' in    

'Neural Network Toolbox' of Matlab help 

   evalopt(ii)=100; 

   for i=1:it 

       [net1,tr,y,et]=train(net1,p,t); 

       net1.layers{1}.transferFcn = 'tansig'; 

       net1.layers{2}.transferFcn = 'logsig'; 

       net1.divideParam.trainRatio=trainRatio1; 
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       net1.divideParam.valRatio=valRatio1; 

       net1.divideParam.testRatio=testRatio1; 

       estval=sim(net1,p(:,tr.valInd)); 

       eval=mse(estval-t(:,tr.valInd)); 

       if eval<evalopt(ii)             

          netopt{(ii)}=net1; 

          tropt(ii)=tr; evalopt(ii)=eval; 

       end 

   end 

End 

***********************************************************************************

* 

%% MSE Plot 

plot(nnn1:nnnj:nnnf,evalopt) 

***********************************************************************************

* 

%% Output 

nn=3; 

ptrain=p(:,tropt(nn).trainInd);     

ttrain=t(:,tropt(nn).trainInd);     

esttrain=sim(netopt{nn},ptrain); 

ptest=p(:,tropt(nn).testInd);       

ttest=t(:,tropt(nn).testInd);      

esttest=sim(netopt{nn},ptest); 

pval=p(:,tropt(nn).valInd);         

tval=t(:,tropt(nn).valInd);         

estval=sim(netopt{nn},pval); 

estwhole=sim(netopt{nn},p); 
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***********************************************************************************

* 

%% Calculation of MAPE 

pre_MAPE = abs((y-t)./t); 

MAPE = mean(pre_MAPE(isfinite(pre_MAPE)))*100 

***********************************************************************************

* 

%% Visuals 

view(net1) 

figure;plot(ttrain,esttrain,'.b'); 

figure;plot(tval,estval,'.g'); 

figure;plot(ttest,esttest,'.r'); 

figure;plot(t,estwhole,'.k') 

Figure;plotregression(ttrain,esttrain,'Train',tval,estval,'Validation',ttest,esttes

t,'Test',t,estwhole,'Whole Data'); 

 


