The <u>Basics</u> Of The Bailey Method

-

2006 Annual Meeting Illinois Asphalt Pavement Association

William J. Pine

Emulsicoat, Inc. / Heritage Research Group **Urbana, IL** / Indianapolis, IN

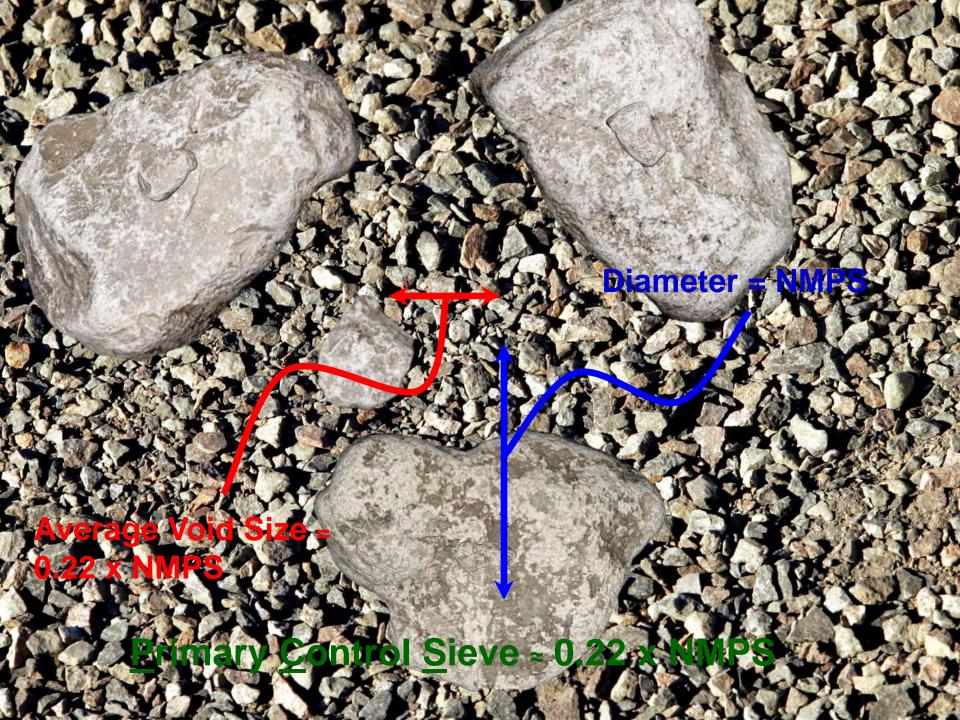
Aggregate Blending The Bailey Method

- Originally developed by Robert D. Bailey
- Evaluate aggregate **packing** characteristics
- Determine what is "Coarse" and "Fine"
- Evaluate individual aggregates and the combined blend by VOLUME as well as by weight

Aggregate Packing What Influences the Results?

• Gradation

- continuously-graded, gap-graded, etc.
- **Type & Amount of Compactive Effort** - static pressure, impact or shearing
- Shape
 - flat & elongated, cubical, round
- Surface Texture (micro-texture)
 - smooth, rough
- Strength
 - Weak vs. Strong, Influence of particle shape?

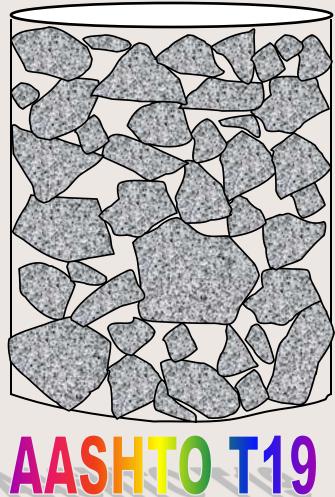

Defining "Coarse" and "Fine"

- "Coarse" fraction
 - Larger particles that create voids
- "Fine" fraction
 - Smaller particles that **fill** voids
- Estimate void **size**
 - Using Nominal Maximum Particle Size (NMPS)
- Break between "Coarse" and "Fine"
 - Primary Control Sieve (PCS)

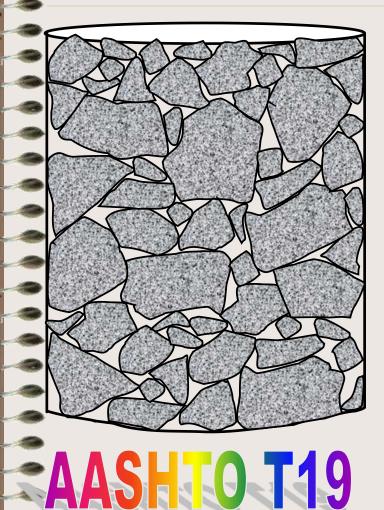
Primary Control Sieve

Mixture NMPS	<u>NMPS x 0.22</u>	Primary Control Sieve
37.5mm	8.250mm	9.5 mm
25.0mm	5.500mm	4.75mm
19.0mm	4.180mm	4.75mm
12.5mm	2.750mm	2.36mm
9.5mm	2.090mm	2.36mm
4.75mm	1.045mm	1.18mm

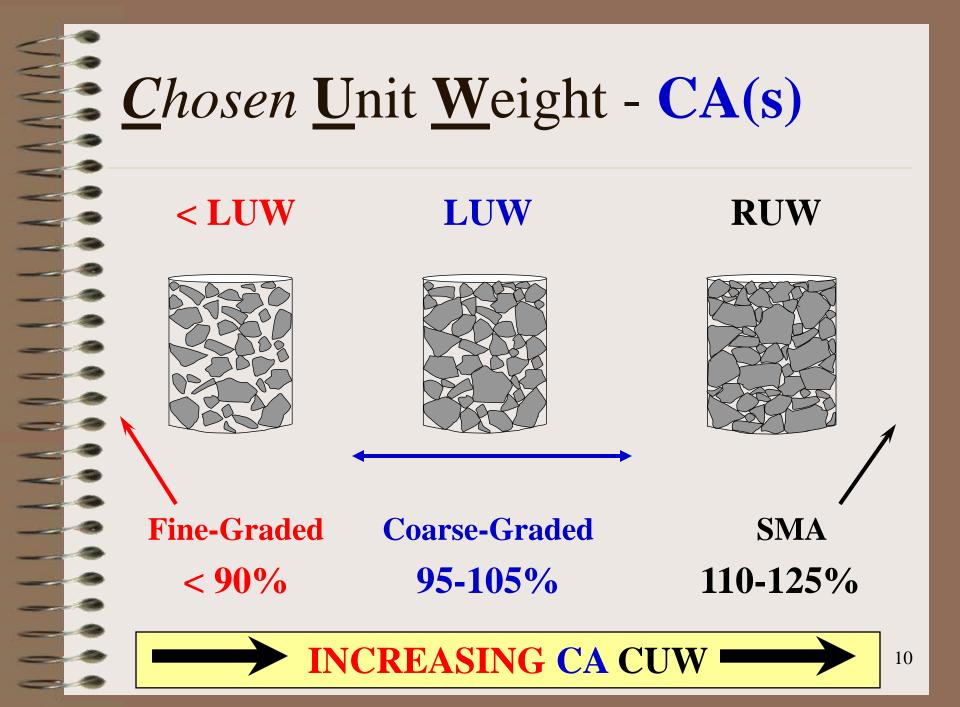
PCS determines the **break** between **Coarse** and **Fine** in the combined blend and if a given aggregate is a CA or FA 6


Evaluating Aggregates by **Volume**

- Why?
 - Better understand aggregate packing
 - Control VOLUME of Coarse and Fine for Mix "Type"
- How?
 - Test the individual Coarse and Fine aggregates

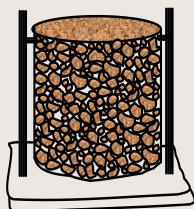


Loose Unit Weight - CA



- NO compactive effort applied
- **Start** of particle-to-particle contact
- Use **shoveling** procedure
- Strike off ~ level
 - Careful **not** to compact
- Determine LUW
 - Kg/m³ or lbs./ft³
- Determine volume of voids

Rodded <u>Unit</u> <u>W</u>eight - CA


- With compactive effort applied
- **Increased** particle-to-particle contact
- Three equal lifts using shoveling procedure
- Rod 25 times per lift
 - Strike off ~ level
 - Careful **not** to compact
- Determine **RUW**
 - Kg/m³ or lbs./ft³
- Determine **volume** of **voids**

<u>Chosen Unit Weight - FA(s)</u>

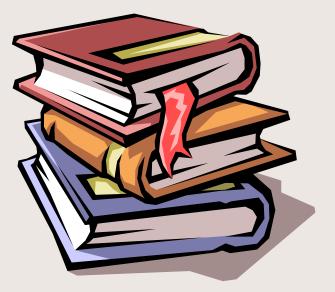
100% LUW

SMA

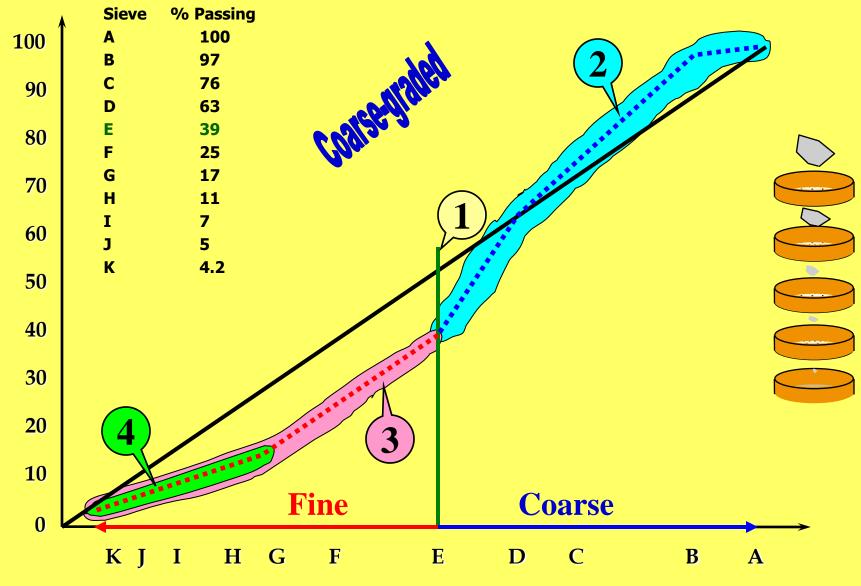
FA CUW "SET" According To Mix Type 100% RUW

Dense-graded

Developing the Combined Blend

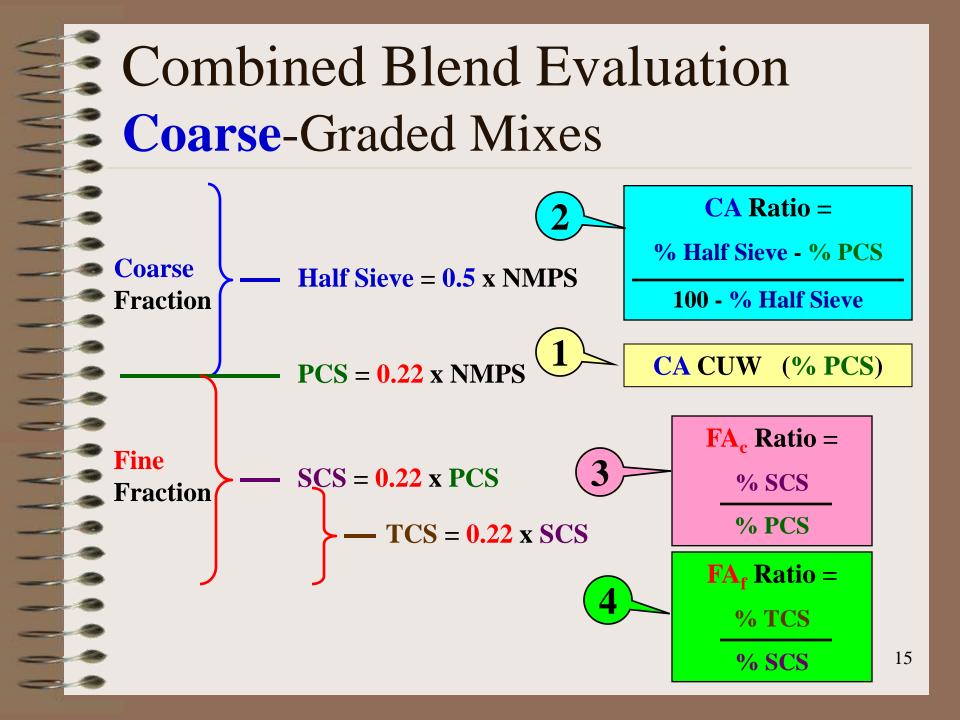

- I. Determine Mix **Type** & NMPS
- 2. Chose the **VOLUME** of **CA**
- 3. Blend the **CA's** by **VOLUME**
- 4. Blend the **FA's** by **VOLUME**
 - 5. Chose the *desired* % Minus 0.075mm

Convert the Individual aggregate %'s from **VOLUME** to **weight**



Combined Blend Evaluation

- Evaluation method
 depends on which
 fraction (Coarse or
 Fine) is in control:
 - Coarse-graded, SMA
 - **Fine**-graded

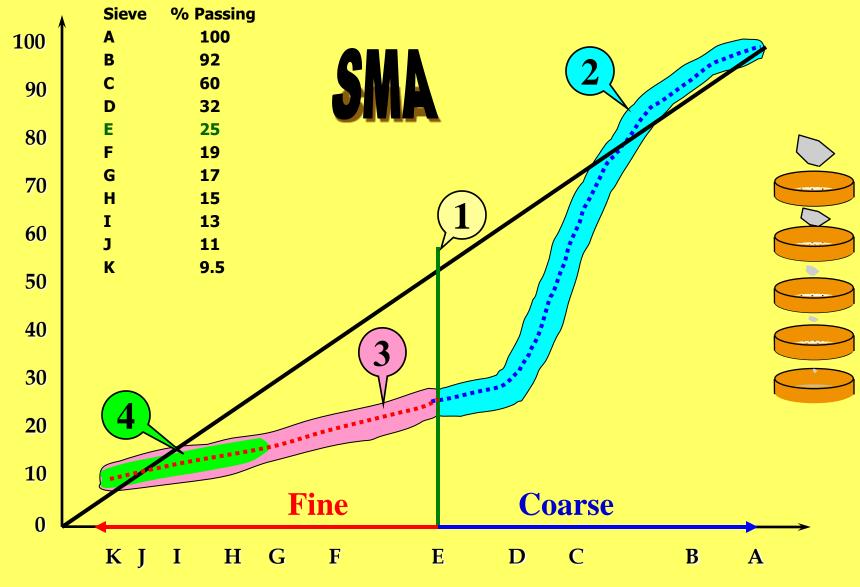


Combined Blend Gradation

Sieve Size (mm) Raised to 0.45 Power

% Passing

Combined Blend Evaluation Coarse-Graded Mixes


- **1. CA CUW increase = VMA increase**
 - 4% change in PCS \cong 1% change in VMA or Voids
 Range 3 5%
- 2. CA Ratio increase = VMA increase
 - $0.20 \text{ change} \cong 1\% \text{ change in VMA or Voids}$
 - Range 0.10 0.30
- B. FA_c Ratio increase = VMA decrease
 - **0.05** change \cong 1% change in VMA or Voids
 - Range 0.025 0.075
- **FA_f Ratio increase** = VMA decrease
 - $0.05 \text{ change} \cong 1\% \text{ change in VMA or Voids}$
 - Range 0.025 0.075

influence on VMA or Voids

Has the

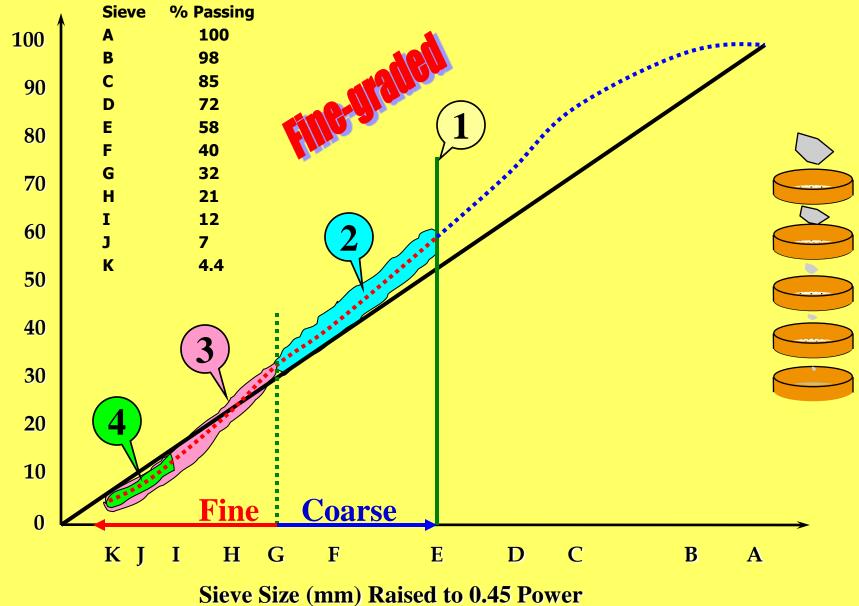
most

Combined Blend Gradation

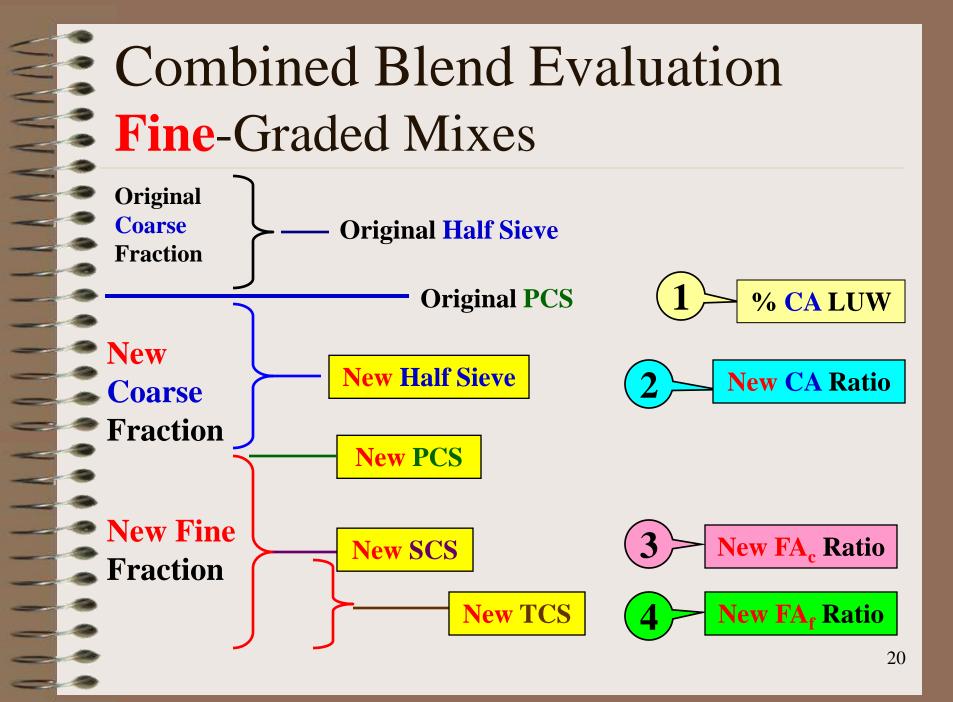
Sieve Size (mm) Raised to 0.45 Power

% Passing

Combined Blend Evaluation SMA Mixes Has the most influence on


- **1. CA CUW increase = VMA increase**
 - 2% change in PCS \cong 1% change in VMA or Voids
 Range 1 3%
- 2. CA Ratio increase = VMA increase
 - $0.20 \text{ change} \cong 1\% \text{ change in VMA or Voids}$
 - Range 0.10 0.30
- **3. FA_c** Ratio **increase** = VMA decrease
 - **0.10** change \cong 1% change in VMA or Voids
 - Range 0.075 0.125
 - FA_f Ratio increase = VMA decrease <
 - $0.10 \text{ change} \cong 1\% \text{ change in VMA or Voids}$
 - Range 0.075 0.125

Has the 2nd most influence on VMA or Voids


VMA or

Voids

Combined Blend Gradation

% Passing

Combined Blend Evaluation Fine-Graded Mixes

- **1.** CA CUW decrease = VMA increase
 - 6% change **ORIGINAL** PCS \cong 1% change in VMA or Voids
 - Range 5 7%
 - . <u>New CA Ratio increase = VMA increase</u>
 - 0.35 change $\cong 1\%$ change in VMA or Voids
 - Range 0.25 0.45
 - . <u>New FA_c Ratio increase = VMA decrease</u>
 - $0.05 \text{ change} \cong 1\% \text{ change in VMA or Voids}$
 - Range 0.025 0.075
 - . <u>New FA_f Ratio increase</u> = VMA decrease
 - **0.05** change \cong **1%** change in VMA or Voids
 - Range 0.025 0.075
 - **Old CA Ratio** <u>still</u> <u>relates</u> to **segregation** susceptibilit²¹

Has the most influence on VMA or Voids

Estimating VMA or Voids Coarse-Graded Mix Example

•	Trial #1 (%	Passing)	•	Trial #2 (%	b Passing)
	25.0mm	100.0		25.0mm	100.0
	19.0mm	97.4 ←	NMPS——	► 19.0mm	98.0
	12.5mm	76.2		12.5mm	76.5
	9.5mm	63.5	HALF —	• 9.5mm	63.6
	4.75mm	38.2 ←	PCS →	4.75mm	37.2
	2.36mm	23.6		2.36mm	22.1
	1.18mm	18.8	SCS →	1.18mm	16.5
	0.60mm	13.1		0.60mm	11.8
	0.30mm	7.4	TCS →	0.30mm	6.8
	0.15mm	5.7		0.15mm	5.2
	0.075mm	4.0		0.075mm	3.5

Estimating VMA or Voids Trial #2 vs. Trial #1

- PCS Increases VMA or Voids
 - 37.2 38.2 = -1.0
 - CA ratio Increases VMA or Voids 0.725 - 0.693 = +0.032 0.032/0.2 = +0.16%
 - **FA_c** ratio **Increases** VMA or Voids 0.444 - 0.492 = -0.048 0.048/0.05 = +0.96%
 - **FA_f** ratio **Decreases** VMA or Voids
 - 0.412 0.394 = +0.018 0.018/0.05 = -0.36%
 - Total Estimated Change:

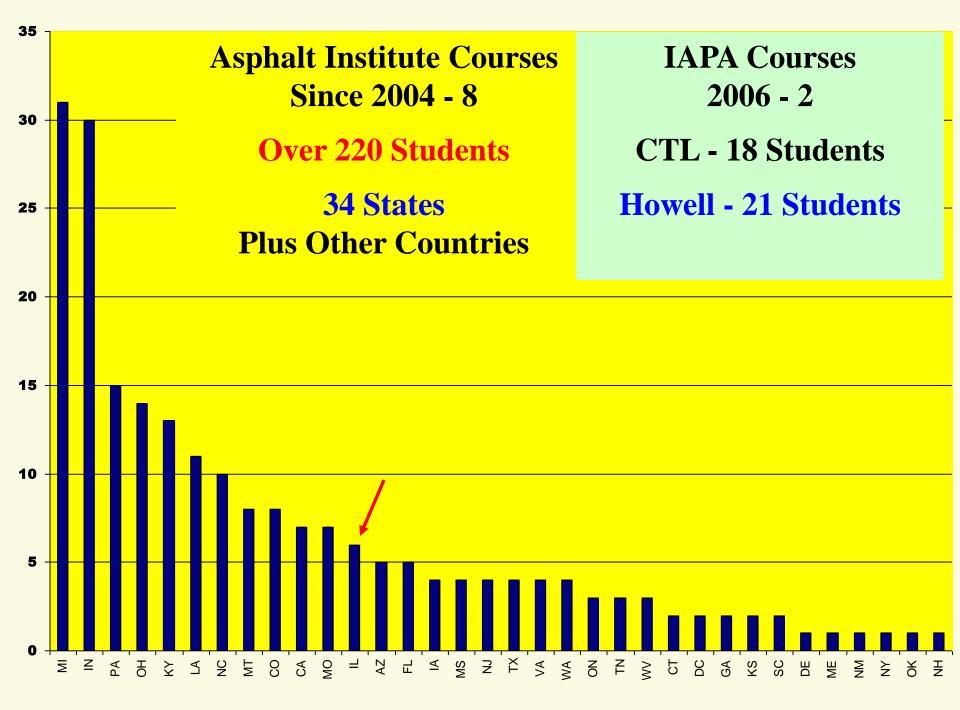
1.0/4.0 = +0.25%

- Plus ~ 1.0% VMA 23

Sample	Mix Design	1	2	3	4
Identification					Proposed
19.0mm	100.0	100.0	100.0	100.0	100.0
12.5mm	98.8	95.9	95.7	98.9	97.5
9.5mm	71.2	71.0	68.4	70.7	70.7
6.25mm	40.1	40.6	39.4	39.4	39.8
4.75mm	25.7	26.6	26.0	24.9	25.6
2.36mm	21.7	21.2	20.7	20.4	22.0
1.18mm	17.4	16.9	16.5	16.0	17.4
0.600mm	14.8	14.1	14.0	13.1	14.6
0.300mm	13.1	12.1	11.7	11.1	12.7
0.150mm	10.9	10.0	9.5	9.3	10.6
0.075mm	9.2	7.8	8.2	7.4	8.3
% AC	5.70	5.86	5.65	5.72	5.72
% AC Absptn	0.41	0.61	0.23	0.46	0.46
Actual VMA	17.9	18.5	17.6	18.7	
Actual Voids	4.0	4.8	3.4	4.9	
CA	0.307	0.327	0.308	0.313	0.297
FAc	0.682	0.665	0.676	0.642	0.664
FAf	0.736	0.709	0.679	0.710	0.726
PCS		0.17	0.33	0.43	-0.10
СА		0.20	0.01	0.06	- 0 .10
FAc	Compares	0.23	0.08	0.53	0.24
FAf		-0.36	-0.76	-0.35	-0.13
Total	Each	0.23	-0.34	0.68	-0.09
Est VMA	Sample to	18.1	17.6	18.6	17.8
Act VMA	-	18.5	17.6	18.7	0.0
Diff in VMA	the Mix	-0.4	0.0	-0.1	17.8
Est Voids	Design	4.3	3.3	4.8	4.0
Act Voids	Ŭ	4.8	3.4	4.9	0.0
Diff in Voids		-0.5	-0.1	-0.1	4.0
PCS		0.17	0.17	0.10	-0.53
CA		0.20	-0.19	0.05	-0.16
FAc	Compares	0.23	-0.15	0.45	-0.29
FAf	Each	-0.36	-0.40	0.41	0.21
Total		0.23	-0.57	1.02	-0.77
Est VMA	Sample to	18.1	17.9	18.6	17.9
Act VMA	the	18.5	17.6	18.7	0.0
Diff in VMA	Previous	-0.4	0.3	-0.1	17.9
Est Voids		4.3	3.8	4.8	4.1
Act Voids	Sample	4.8	3.4	4.9	0.0
	-				
Diff in Voids		-0.5	0.4	-0.1	4.1

The Four Main Principles

1. % PCS (Volume of CA)


- Increase/decrease in VMA depends on mix type
- **CA ratio** (Control with **CA Volume** blend)
 - Low values can be susceptible to segregation
 - High values can be difficult to compact
 - As it increases, VMA increases
- FA_c ratio (Control with FA Volume blend)
 As it increases, VMA decreases
- FA_f ratio (Control with % minus 0.075mm)
 As it increases, VMA decreases

So How Does the Method *Help*?

- In Developing **New** Blends:
 - Field Compactability
 - Segregation Susceptibility
- In Evaluating **Existing** Blends:
 - What's worked and what hasn't?
 - More clearly define principle ranges
- In **Estimating** VMA/Void changes:
 - Between Design trials
 - Between QC and/or QA samples
 - Saves Time and Reduces Risk!

It's a TOOL!

