- Alderson - Algerian - Algerian

Who Really Has Risk? Adam J.T. Hand, PhD, PE University of Nevada, Reno

80th IAPA Annual Meeting Springfield, IL March 13, 2017

Introduction

Mechanics of Typical Quality Assurance Specifications

Payment Drivers in QC/QA Specifications

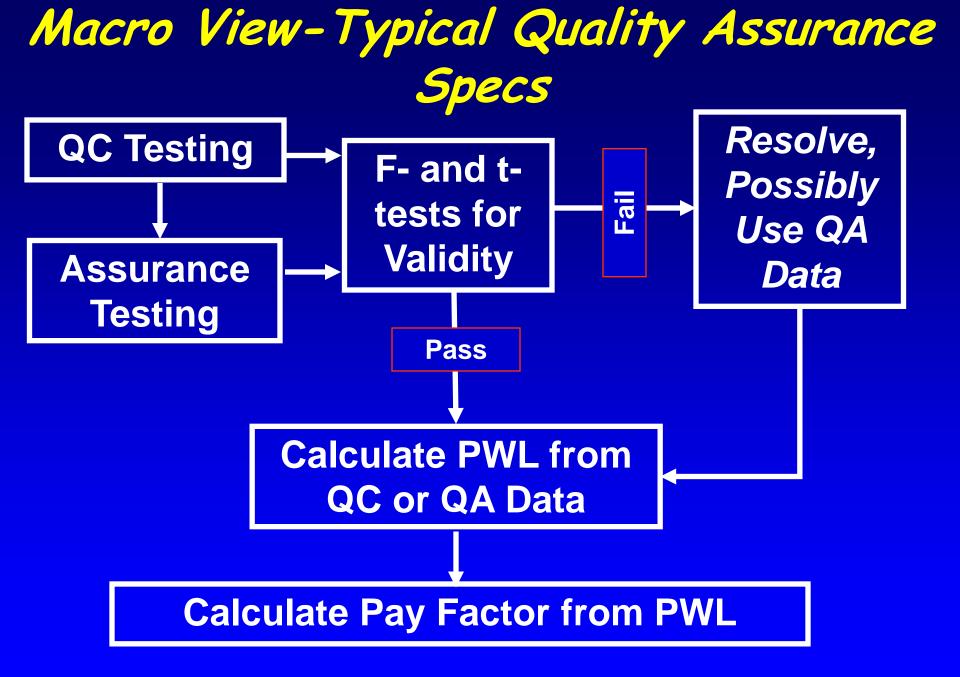
Common Challenges and Potential Solutions

Summary/Conclusions/Recommendations

Many States using Quality Assurance Specifications

 Quality Assurance Spec Objective:
 To specify and measure quality related to pavement performance and pay for quality provided (Pay For Performance)

Statistically Based
 Acceptance Sampling and Testing
 PWL used to Quantify Quality
 Pay Factors = f(PWL)



Many Specifications Seem Alike

Engineering Judgment Used to Select Many Specification Parameters

Specifications Sensitive to

- Variability in Measured Quality Characteristics
 Sampling, Testing, M/C
- N and n
- Specifications Limits

Statistically Based Acceptance Plan

Components Acceptance Sampling and Testing Quality Characteristics Specification Limits Statistical Model Quality Level Goals Risk Pay Factors

Common Challenges

Understanding Variability & Setting Specification Limits

Understanding of Risk

Impact of Small Changes (ie. Sampling location)

Test Turn Around Time

Dispute Resolution

No Outlier Definition, Detection, or Handling/Disposition

Independent Labs

Serving Multiple Customers

Offset Between Labs

Statistically Based Acceptance Plan

Acceptance Sampling and Testing

- QC & PC Acceptance –IA
- Lot and Sublot Definitions
- Sampling/Testing Frequencies
- Sampling Methods/Locations
- Test Methods
- Basis: Engineering Judgment

Quality Characteristics (What is Specified)

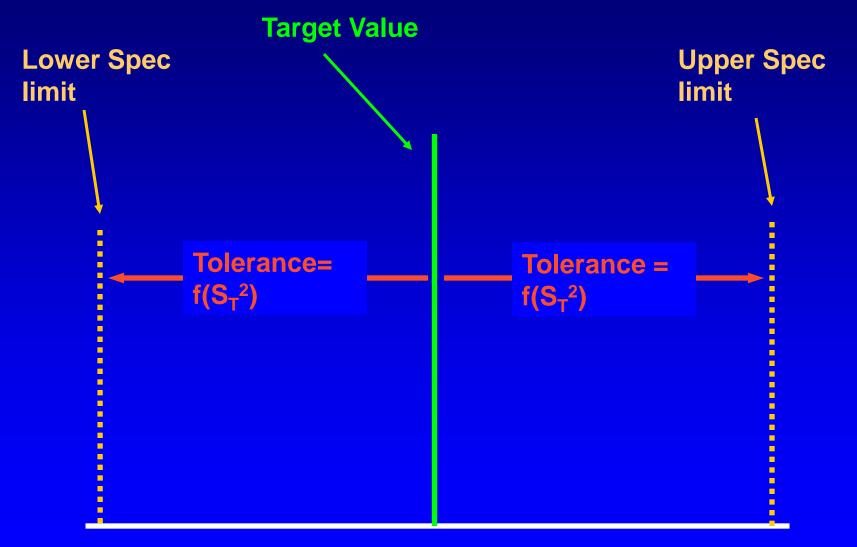
Determine the Composite Pay Factor (CPF) for each mixture. The CPF shall be rounded to 3 decimal places.

$$CPF = \left[f_{VMA} (TPF_{VMA}) + f_{voids} (TPF_{voids}) + f_{density} (TPF_{density}) \right] / 100$$

Substituting from Table 1:

 $CPF = [0.3(TPF_{VMA}) + 0.3(TPF_{voids}) + 0.4(TPF_{density})] / 100$

Statistically Based Acceptance Plan


Specification Limits

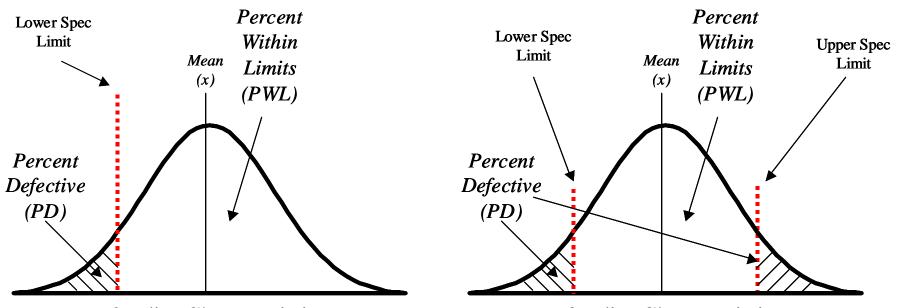
- Define Acceptable and Unacceptable Material Quality
- Function of $(S_T^2) = S_s^2 + S_t^2 + S_{m/c}^2$
- Basis: Engineering Judgment?

Statistical Model

- Quality Defined as Percent of Quality Characteristic (ie. In-place Density) Within Spec Limits
- PWL Method Normally used to Define Quality
- Use QC, QA, QC+QA Data? Engineering Judgment

Establishing Specification Limits

Quality Characteristic (ie. %AV)


Statistical Model = PWL Single and Double Spec Limits

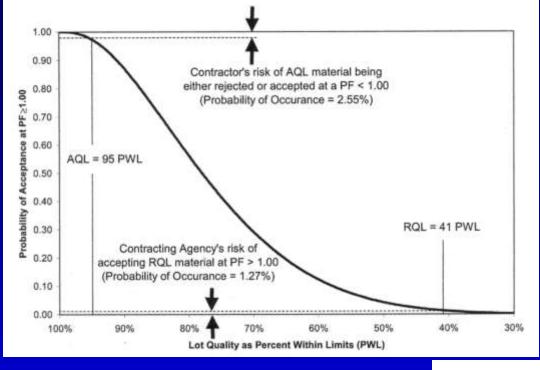
Single-Limit Specification

Quality Characteristic Distribution

Double Limit Specification

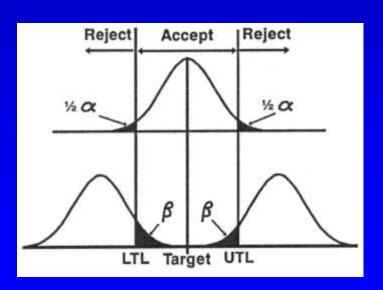
Quality Characteristic Distribution

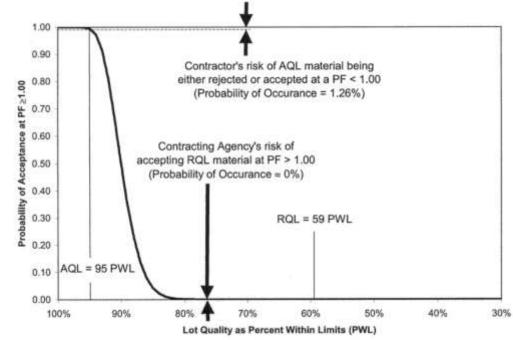
Quality Characteristic


Quality Characteristic

Statistically Based Acceptance Plan

Quality Level Goals
 AQL=Min Quality (PWL) at Full Acceptance
 90 or 95
 RQL=Max Quality (PWL) at Unacceptable
 60 to 75
 Basis: Engineering Judgment


Risk


- Use Sample not Population, so Risk
- Wrongful Acceptance or Rejections
- Balance Seller and Buyer Risks with n
- Basis: Engineering Judgment and Logistics

OC Curves

Risk Sample/Test Frequency

Statistically Based Acceptance Plan

Pay Factors Quality (Defined by PWL) is Related to Payment by Pay Factor Incentives (Bonuses) for PWL > AQL Disincentives (Penalties) for AQL > PWL > RQL

Composite Pay Factors

$$CompositePayFactor = \frac{\sum (PF_n x Wt_n)}{\sum Wt_n} x100$$

Advantages

- PWL is Best Tool to Quantify Quality Relative to
 TV, Spec Limits Mean, Variability
- QC/QA with PWL: Transfer of Responsibility from SHA to Material Producer/Contractor for Quality
- Opportunity for Producer/Contractor to Control Processes
- Opportunity to Be Compensated for Quality Provided
- Opportunity for Producer/Contractor to Refine Processes and Build Technical Competency

Disadvantages

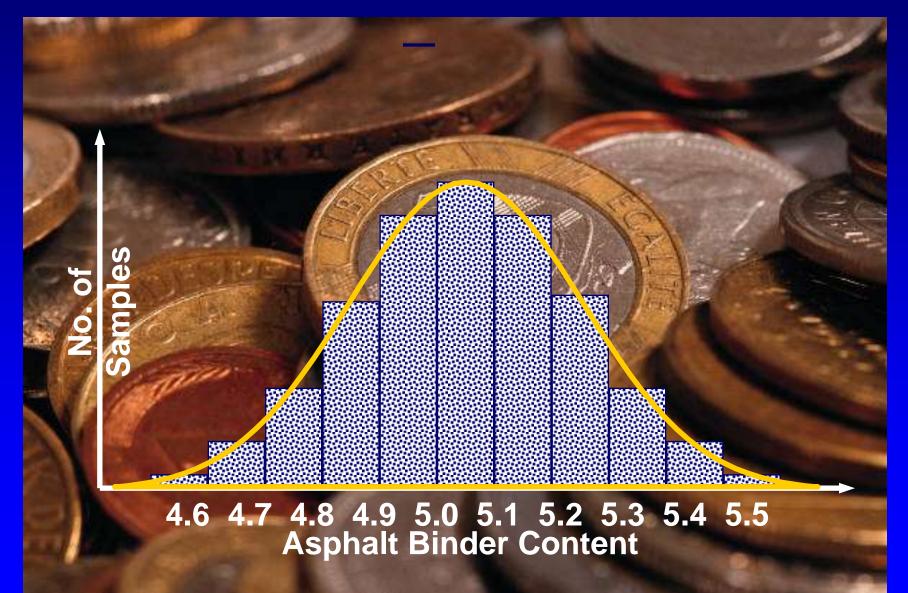
Lack of Knowledge of Risk in Specifications Risk and Payment Changes with: Lot and Sublot Size Samples and Tests per Lot and Sublot Sampling Location Test Methods and Test Method Options Acceptance Limit Changes Specification Limit Changes Pay Factor Equations, Weights and Variables ÷....

Are tools are not perfect, so we can't eliminate risk

Specification Selection & Changes

Borrow Specification and Make "Small **Refinements**" Tests per Sublot ♦5 vs. 10 for Density Sample Location Mat vs. Truck Test Method Options Specification Limits Changes for Several Reasons Pay Factor Equation Continuous to Stepped Function

Introduction

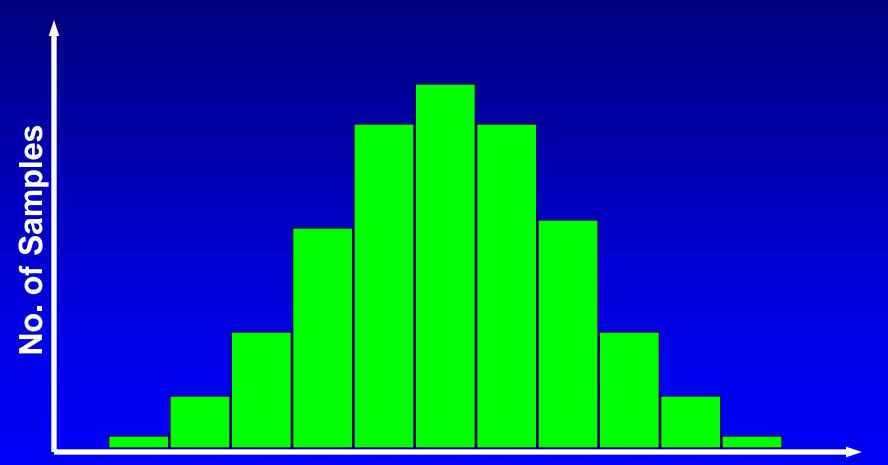

Mechanics of Typical Quality Assurance Specifications

Payment Drivers in QC/QA Specifications

Common Challenges and Potential Solutions

Summary/Conclusions/Recommendations

PWL and Pay Factor Theory (It Doesn't Have to be a Gamble!)

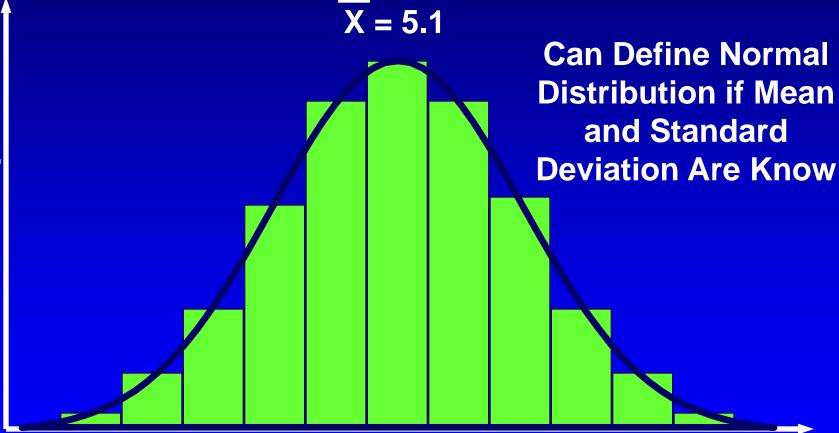

Percent Within Limits Concept

Percent Within Limits (PWL) methodology and Pay Factors

- Small number of tests results outside the specification limits is normal and not necessarily detrimental to performance
- Led to Acceptable Quality Level (AQL) definition
- Thus Percent Deficient (PD) and Percent Within Limits (PWL) definitions
- PWL = the percent of a lot falling within set specification limits
- Payment is based on PWL and allows for both potential penalty or bonus

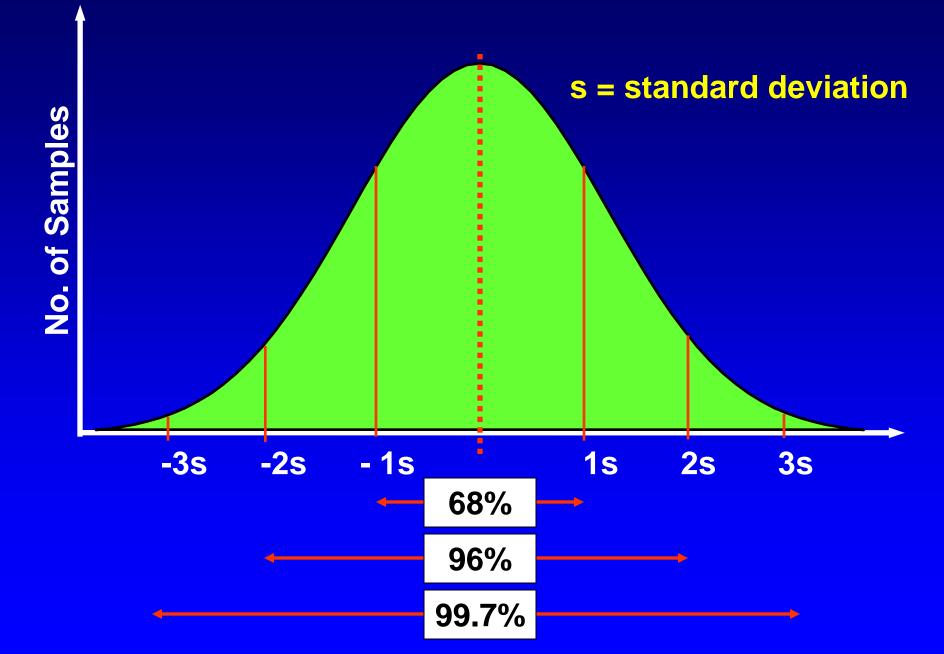
Idea is to tie Quality (& Payment) to Performance

Histogram A Bar Chart of Test Result Frequency

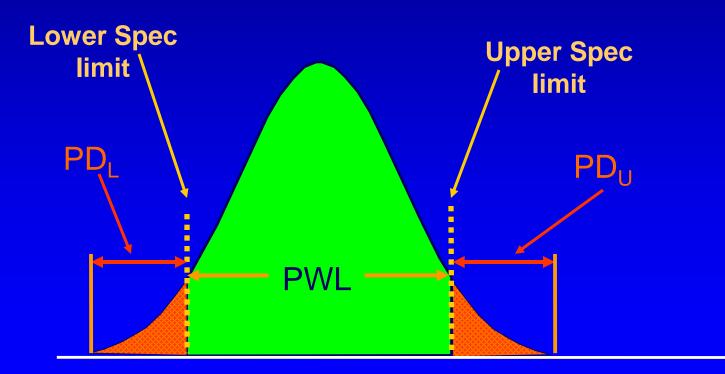


4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Asphalt Binder Content

Normal Distribution A Bell Curve of the Histogram


No. of Samples

4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Asphalt Binder Content



Normal Distribution and Standard Deviation

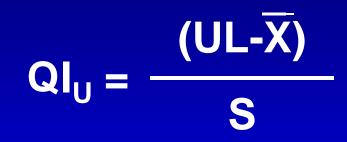
PWL and PD Concepts

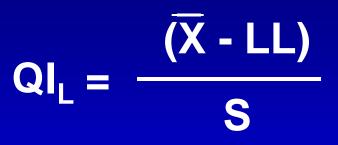
PWL = Area of Distribution within Spec Limits PWL = $100 - (PD_U + PD_L)$

% **AC**

Mechanics of PWL

$PWL = 100 - (PD_U + PD_L)$


Where:


 PD_U = Percent Defective (upper), obtained from PD table for calculated QI_U and given n

PD_L = Percent Defective (lower), obtained from PD table for calculated Ql_L and given n

n = number of test results

Mechanics of PWL

Where:

- QI_U = Upper Quality Index
- \overline{X} = mean of test results

- QI_I = Lower Quality Index
- **S** = standard deviation
- UL = Upper specification Limit (target value + tolerance)
- LL = Lower specification Limit (target value tolerance)

Quality Level Analysis (PWL=f(n, spec limits)

Illinois Department of Transportation

PFP Quality Level Analysis Appendix E.1 (continued)

Effective: December 12, 2003 Revised: January 1, 2017

TABLE 2: QUALITY LEVELS QUALITY LEVEL ANALYSIS BY STANDARD DEVIATION METHOD

Pu OR PL PERCENT WITHIN LIMITS FOR	UPPER QUALITY INDEX QU OR LOWER QUALITY INDEX QL														
								n=10	n=12	n=15	n=19	n=26	n=38	n=70	n=201
POSITIVE VALUES OF QUOR Q	n=3	n=4	n≃5	n=6	n=7	n=8	n=9	to n=11	to n=14	to n=18	to n=25	to n=37	to n=69	to n=200	to infinity
100	1.16	1.50	1.79	2.03	2.23	2.39	2.53	2.65	2.83	3.03	3.20	3.38	3.54	3.70	3.83
99		1.47	1.67	1.80	1.89	1.95	2.00	2.04	2.09	2.14	2.18	2.22	2.26	2.29	2.31
98	1.15	1.44	1.60	1.70	1.76	1.81	1.84	1.86	1.91	1.93	1.96	1.99	2.01	2.03	2.05
97		1.41	1.54	1.62	1.67	1.70	1.72	1.74	1.77	1.79	1.81	1.83	1.85	1.86	1.87
96	1.14	1.38	1.49	1.55	1.59	1.61	1.63	1.65	1.67	1.68	1.70	1.71	1.73	1.74	1.75
95		1.35	1.44	1.49	1.52	1.54	1.55	1.56	1.58	1.59	1.61	1.62	1.63	1.63	1.64
94	1.13	1.32	1.39	1.43	1.46	1.47	1.48	1.49	1.50	1.51	1.52	1.53	1.54	1.55	1.55
93		1.29	1.35	1.38	1.40	1.41	1.42	1.43	1.44	1.44	1.45	1.46	1.46	1.47	1.47
92	1.12	1.26	1.31	1.33	1.35	1.36	1.36	1.37	1.37	1.38	1.39	1.39	1.40	1.40	1.40
91	1.11	1.23	1.27	1.29	1.30	1.30	1.31	1.31	1.32	1.32	1.33	1.33	1.33	1.34	1.34
90	1.10	1.20	1.23	1.24	1.25	1.25	1.26	1.26	1.26	1.27	1.27	1.27	1.28	1.28	1.28
89	1.09	1.17	1.19	1.20	1.20	1.21	1.21	1.21	1.21	1.22	1.22	1.22	1.22	1.22	1.23
88	1.07	1.14	1.15	1.16	1.16	1.16	1.16	1.17	1.17	1.17	1.17	1.17	1.17	1.17	1.17
87	1.06	1.11	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.13	1.13
86	1.04	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08	1.08

27

From

Illinois Department of Transportation

PFP Quality Level Analysis Appendix E.1 (continued)

Effective: December 12, 2003 Revised: January 1, 2017

Once the project is complete determine the Total Pay Factor (*TPF*) for each parameter by using a weighted lot average by tons (mix) or distance (density) of all lots for a given parameter.

TPF = W1PFlot1 + W2PFlot(n+1) + etc.

Where:

(9)

W1,W2... = weighted percentage of material evaluated PF = Pay factor for the various lots TPF = Total pay factor for the given parameter

(10) Determine the Composite Pay Factor (CPF) for each mixture. The CPF shall be rounded to 3 decimal places.

$$CPF = \left[f_{VMA} (TPF_{VMA}) + f_{voids} (TPF_{voids}) + f_{density} (TPF_{density}) \right] / 100$$

Substituting from Table 1:

$$CPF = \left[0.3(TPF_{VMA}) + 0.3(TPF_{voids}) + 0.4(TPF_{density})\right] / 100$$

Where:

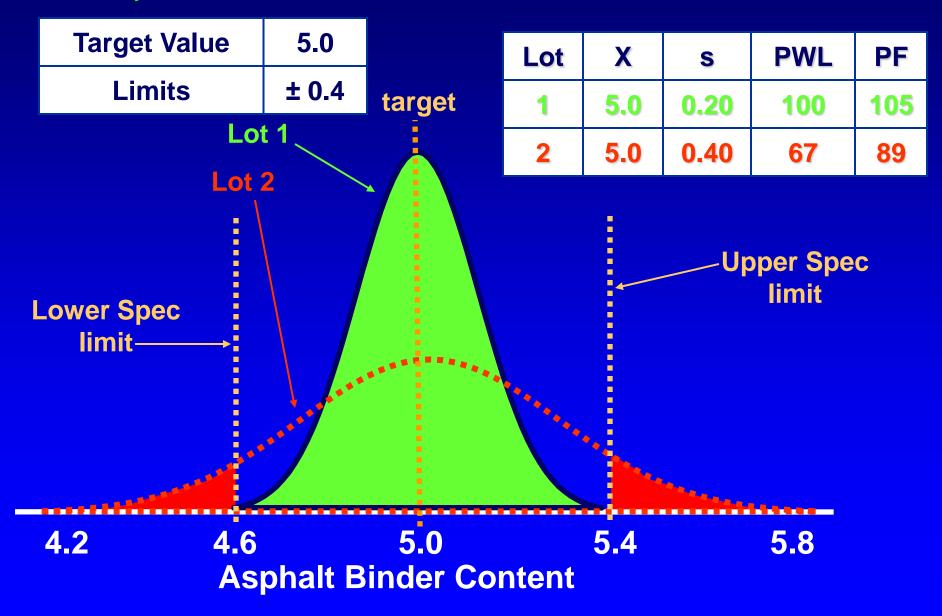
f_{VMA}, f_{voids}, and f_{density} = Price Adjustment Factor listed in Table 1

 TPF_{VMA} , TPF_{volds} , and $TPF_{density}$ = Total Pay Factor for the designated measured attribute from (9)

(11) Determine the final pay for a given mixture.

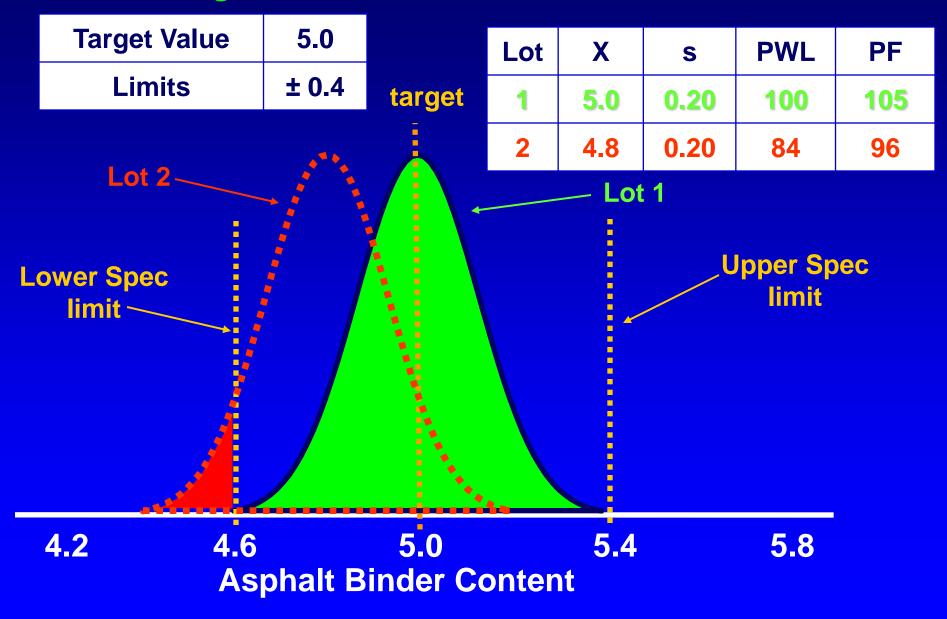
Final Pay = Mixture Unit Price * Quantity * CPF

nit

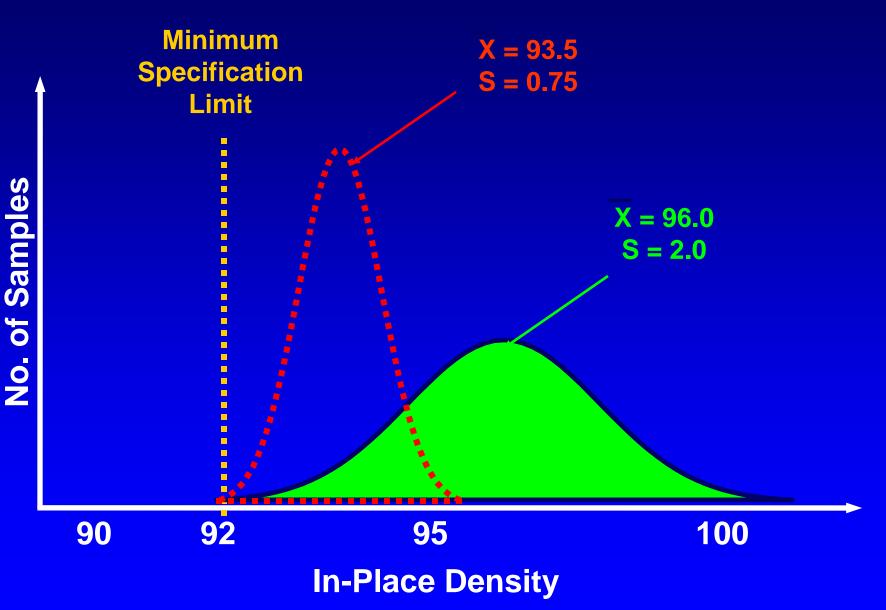

28

PWL, PF, and Specification Limits

Can We have a PF less than 1.0 even if all test results are in Spec?


00

Effect on PWL's (Equal Means but Different Standard Deviations)



Effect on PWL's

(Off Target Means and Same Standard Deviations)

Single Spec Limit PWL (Density)

Introduction

Mechanics of Typical Quality Assurance Specifications

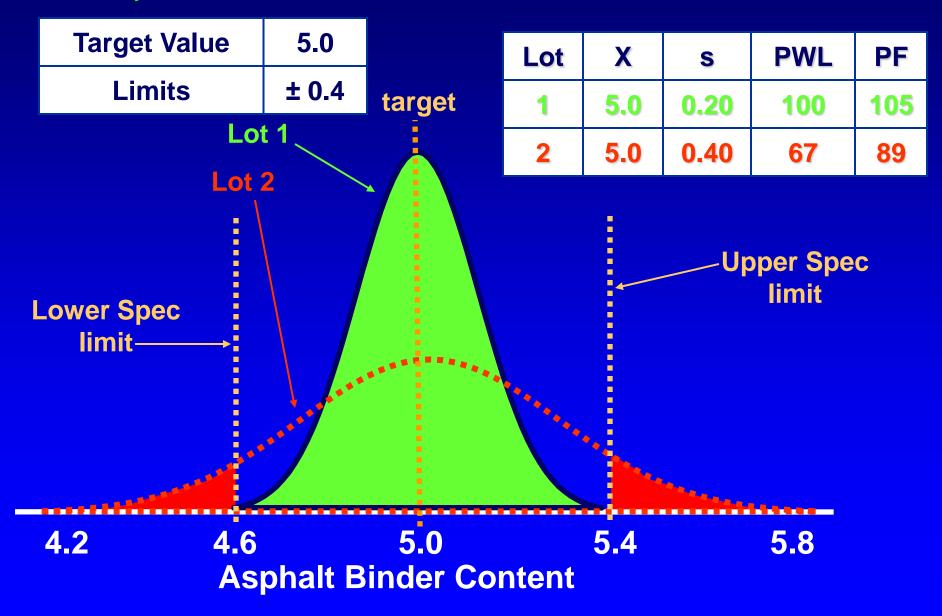
Payment Drivers in QC/QA Specifications

Common Challenges and Potential Solutions

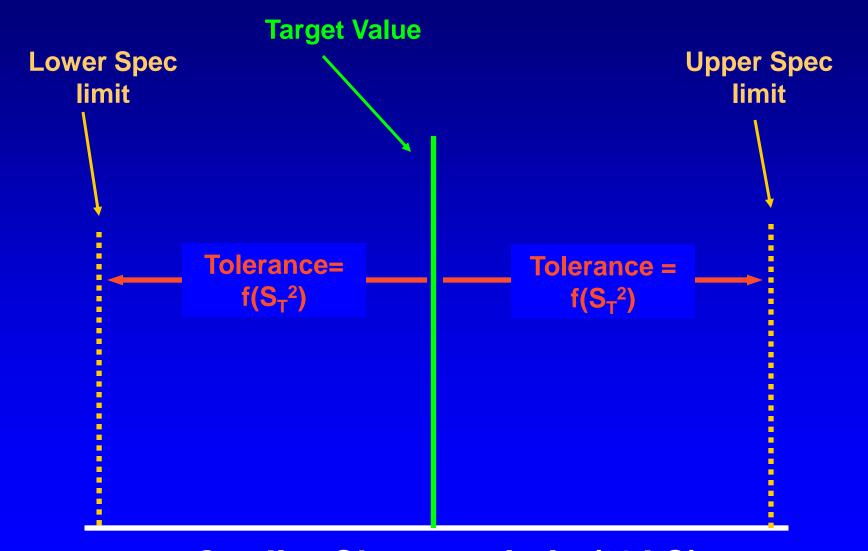
Summary/Conclusions/Recommendations

Acceptance & Payment Drivers in Assurance Specifications

Variability (from Mechanics)
 On Target and Standard Deviation


Variability and Spec Limits

Reducing Variability and Specification Limits


Examples

- Sample Location
- Test Methods
- Pooling QC & QA Data for Payment
- Spec Limit Changes

Effect on PWL's (Equal Means but Different Standard Deviations)

Establishing Specification Limits

Quality Characteristic (%AC)

Variability and Spec Limits

 Several Components of Total Variability
 Little Work to Define Percent Distribution of Components for Most Quality Characteristics
 Materials Supplier/Contractor only Controls One Component

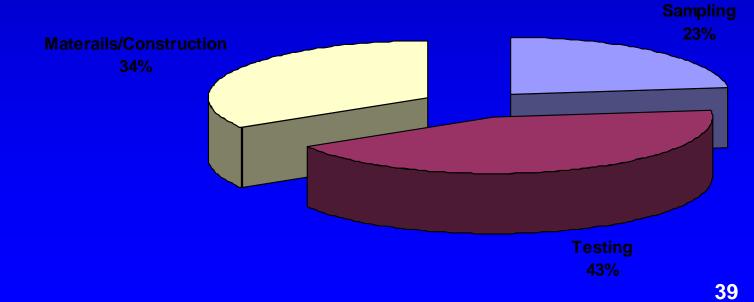
Establishing Specification Limits
 R9: 3 x S_T
 Stroup-Gardner/Newcomb/Savage: 3 x S_t

Variability Components

Variability = variability + variability + variability

(total)

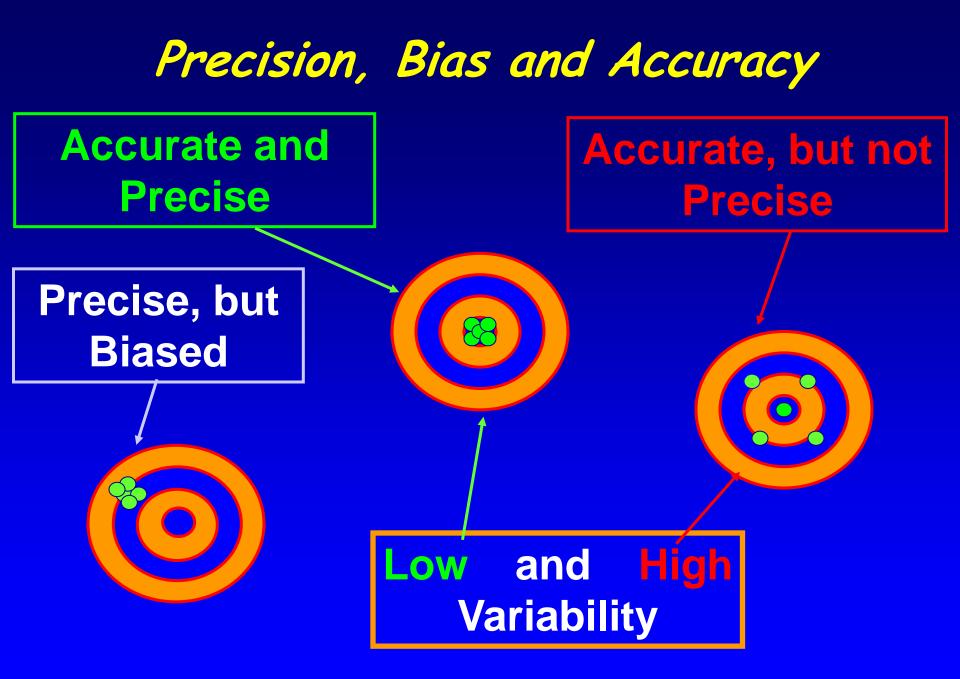
(sampling) (test method)

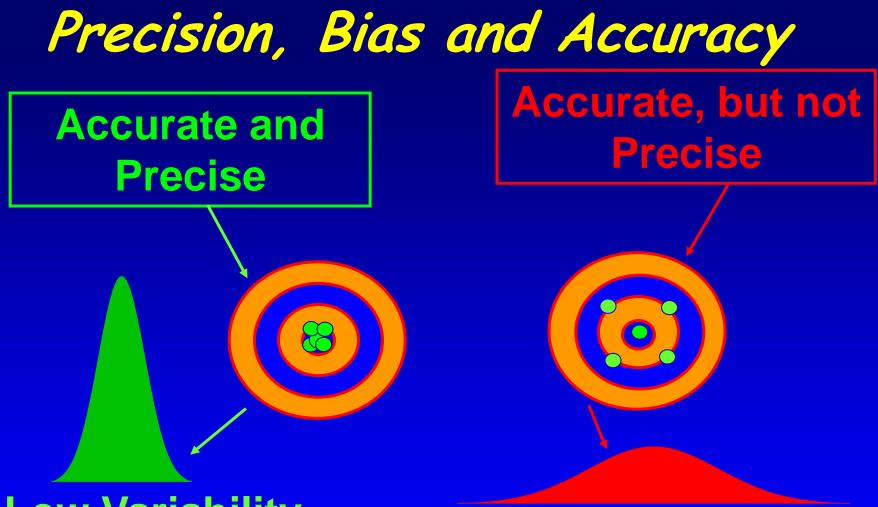

(mat./const.)

$S_{total}^{2} = S_{s}^{2} + S_{t}^{2} + S_{m/c}^{2}$

Sampling Variability (s^2_s)

10-30% of Total Variability

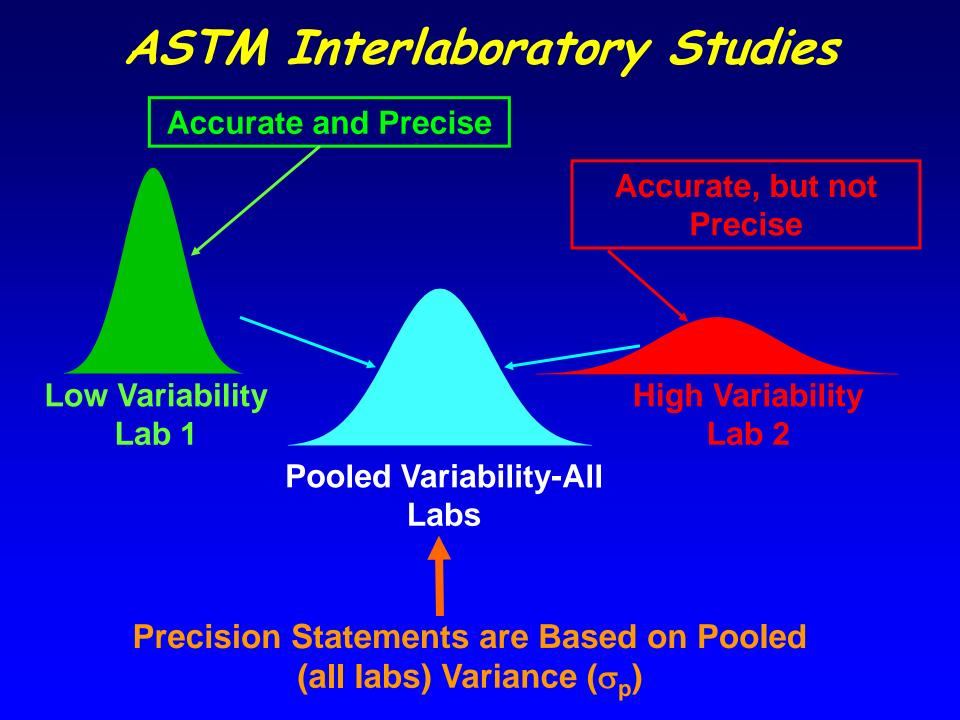

- Sample Location
- Sample Method
- Sample Size
- Sample Split



Test Method Variability (s²,)

30 to 50% of Total Variability
Precision and Bias Statements
Within vs. Between Lab Variability
Use of QC vs. QC+QA vs. QA data to calc PWL

Designations			Multilaboratory Precision									
AASHTO ASTM Method Method		Description		Deviation S)	Acceptable Range of Two Results (D2S)							
<u> </u>	L'		AASHTO	ASTM	AASHTO	ASTM						
T228	D70	Asphalt Cement Specific Gravity	0.0024	0.0024	0.0068	0.0068						
T85	C127	Coarse Aggregate Specific Gravity	0.013	0.013	0.038	0.038						
T84	C128	Fine Aggregate Specific Gravity	0.023	0.023	0.066	0.066						
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0269	*	0.076						
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0064 (0.0193)	0.0064 (0.0193)	0.019 (0.055)	0.019 (0.055)						


Low Variability

High Variability

Precision Statements are Based on Interlaboratory Studies (Round Robin)

ASTM Interlaboratory Studies

Material ID	Laboratory Number	Replicate Number	Within Lab Variance (σ²)	Average Within Lab Variance $\overline{(\sigma^2)}$	Average Within Lab Std Dev (σ)		
	1	1, 2, 3	2				
	2	1, 2, 3	4				
1	•	1, 2, 3	•	3	1.73		
•	•	1, 2, 3	•	5	1.75		
	•	1, 2, 3	•				
	10	1, 2, 3	3				ASTM
	1	1, 2, 3	3				
2	2	1, 2, 3	4				
	•	1, 2, 3	-	4	2.0		1S
2	•	1, 2, 3	-	4	2.0	╘┕┯	
	-	1, 2, 3 .					
	10	1, 2, 3	5				
	•	1, 2, 3	-	-	-		
	•	1, 2, 3	•	•	-		
	•	1, 2, 3	•	•			
	1	1, 2, 3	4				ASTM
	2	1, 2, 3	5				
5	•	1, 2, 3	•	5	2.24		Dac
		1, 2, 3	•				D2S =
	10	1, 2, 3	5		, ' 		1S(2√2)
	·	1.99					

Within Laboratory Precision (Single Operator Precision)

AASHTO MethodASTM MethodDescriptionStandard Deviation (1S)Two Results (D2S)T228D70Asphalt Cement Specific Gravity0.00080.00080.00230.0023T85C127Coarse Aggregate Specific Gravity0.0090.0090.0250.025T84C128Fine Aggregate Specific Gravity0.0110.0110.0320.032										
AASHTO MethodASTM MethodDescriptionStandard Deviation (1S)Two Results (D2S)T228D70Asphalt Cement Specific Gravity0.00080.00080.00230.0023T85C127Coarse Aggregate Specific Gravity0.0090.0090.0250.025T84C128Fine Aggregate Specific Gravity0.0110.0110.0320.032	Designations			Single Operator Precision						
T228 D70 Asphalt Cement Specific Gravity 0.0008 0.0008 0.0023 0.0023 T85 C127 Coarse Aggregate Specific Gravity 0.009 0.009 0.025 0.025 T84 C128 Fine Aggregate Specific Gravity 0.011 0.011 0.032 0.032			Description							
T85C127Coarse Aggregate Specific Gravity0.0090.0090.0250.025T84C128Fine Aggregate Specific Gravity0.0110.0110.0320.032Bulk Specific Gravity of Compacted				AASHTO	ASTM	AASHTO	ASTM			
T84 C128 Fine Aggregate Specific Gravity 0.011 0.011 0.032 0.032 Bulk Specific Gravity of Compacted Image: Compacted	T228	D70	Asphalt Cement Specific Gravity	0.0008	0.0008	0.0023	0.0023			
Bulk Specific Gravity of Compacted	T85	C127	Coarse Aggregate Specific Gravity	0.009	0.009	0.025	0.025			
TION BULK Specific Gravity of Compacted	T84	C128	Fine Aggregate Specific Gravity	0.011	0.011	0.032	0.032			
1166 D2726 Bituminous Specimens 0.0124 0.035	T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0124	*	0.035			
T209 D2041	T209	D2041					0.011 (0.018)			

* - "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

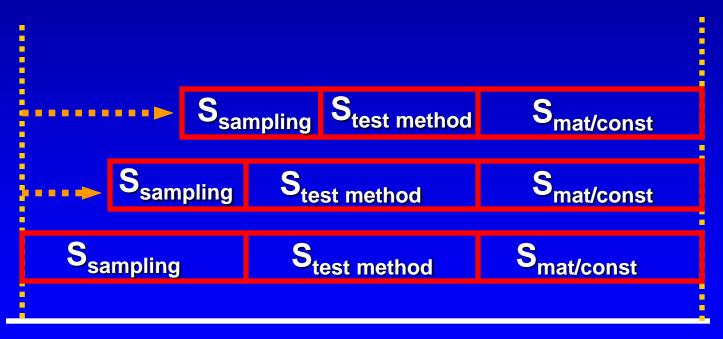
Between Laboratory Precision (Multilaboratory Precision)

Designations			Multilaboratory Precision						
AASHTO Method	ASTM Method	Description		Deviation S)	Acceptable Range of Two Results (D2S)				
			AASHTO	ASTM	AASHTO	ASTM			
T228	D70	Asphalt Cement Specific Gravity	0.0024	0.0024	0.0068	0.0068			
T85	C127	Coarse Aggregate Specific Gravity	0.013	0.013	0.038	0.038			
T84	C128	Fine Aggregate Specific Gravity	0.023	0.023	0.066	0.066			
T166	D2726	Bulk Specific Gravity of Compacted Bituminous Specimens	*	0.0269	*	0.076			
T209	D2041	Theoretical Maximum Specific Gravity of Bituminous Mixture	0.0064 (0.0193)	0.0064 (0.0193)	0.019 (0.055)	0.019 (0.055)			

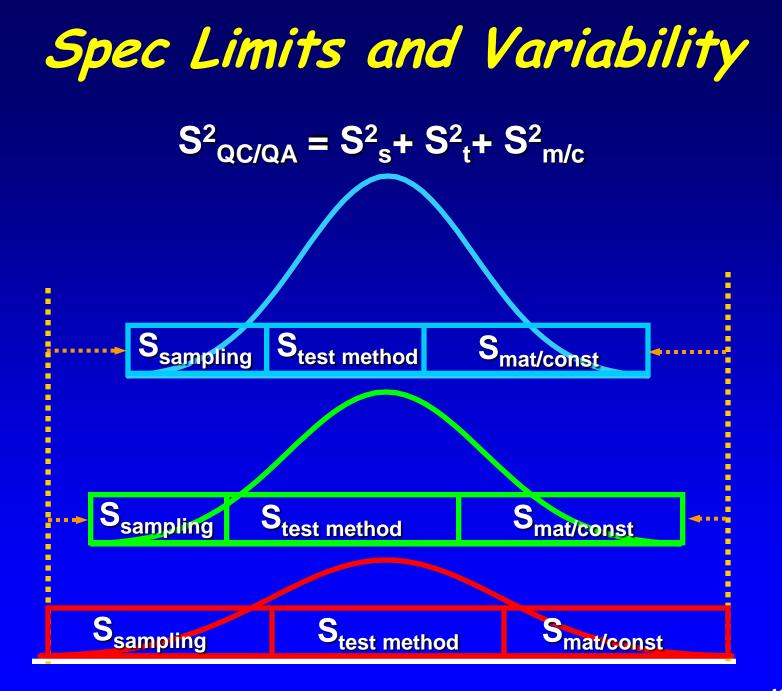
* - "Duplicate specific gravity results by the same operator should not be considered suspect unless they differ more than 0.02."

() - supplemental procedure for mixtures containing porous aggregate conditions ("dryback procedure").

Material/Construction Variability $(s_{m/c}^2)$


30 to 40% of Total Variability
Asphalt Binder, Aggregate
Production
Placement

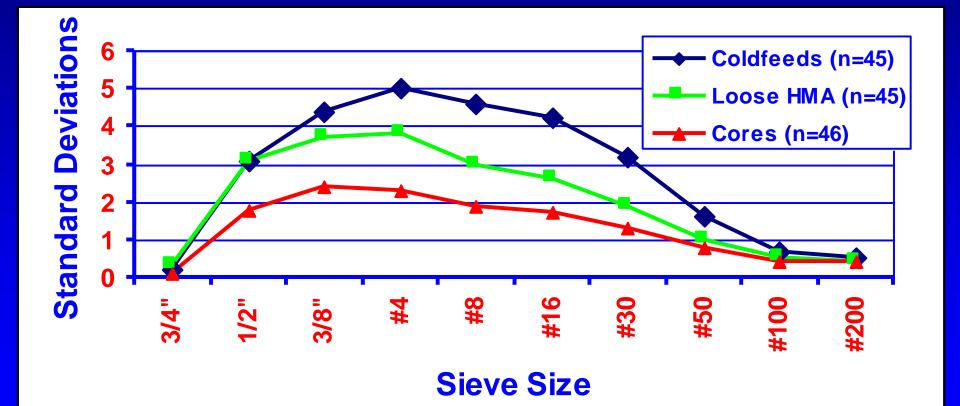
 $s_T^2 = s_s^2 + s_t^2 + s_{m/c}^2$


What Payment Should Reflect!

Variability and Spec Limit Changes

$$S_{total}^{2} = S_{s}^{2} + S_{t}^{2} + S_{m/c}^{2}$$

Total Variability in Quality Characteristic


Example - Sampling Location

What is Influence of Sampling Location on Gradation PWLs

Use Data as an Example
 45 sublots
 Loose = truck samples
 Cores = 6" cores from mat
 Note MTV used

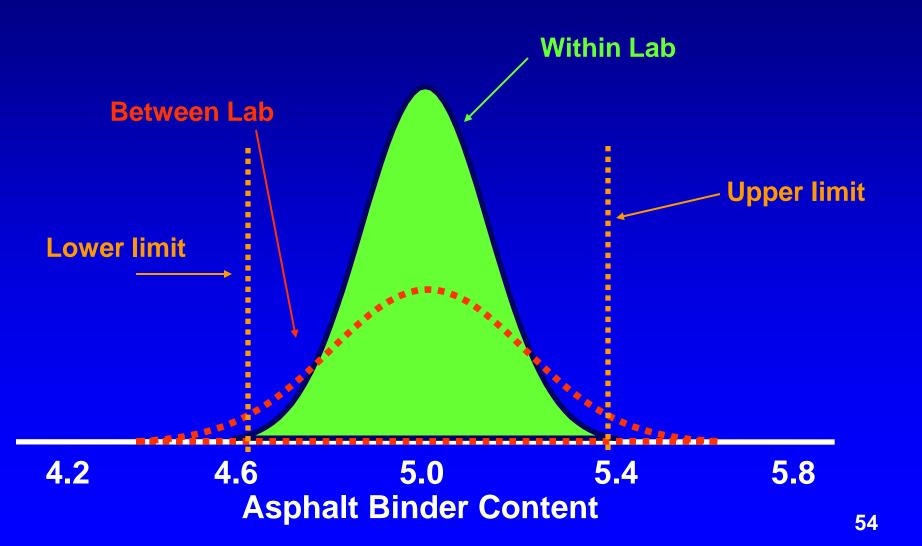
Effect of Sampling Location on Gradation Variability (Fine Mixture)

51

Influence of Sampling Location on PWL

Sieve	Sample Location & Standard Deviations							
Sieve	Truck	Cores						
#4	4.9	2.2						
#8	3.1	1.8						
#200	0.6	0.5						
PWL ¹	<mark>98.4</mark>	99.9						

¹Assumes that PWL for Asphalt Content and Voids in Total Mixture are 100


Example - Pooling QC&QA Data for Payment Determination

- Specification Developed Around Within Lab Testing Variability
- Pooling QC and QA Data Results in Between Lab Variability in PWL Determination
- Decreased PWL, Decreased Payment

Two Examples

- SHA Spec When t-test Significant, Pool QC and QA
- Contract Administrator Dictates Post-Contract Award, Pre-Construction to Eliminate Potential for Dispute

Influence of Within and Between Lab Variability on PWL

Pooling QC and QA Data for Payment

Used State DOT QC/QA Spec

Assumed Means = Target Values

Determined Standard Deviations to Get PF = 1.0

 Increased Standard Deviations by Difference in Within and Between Lab 1S
 Holding Sampling and Materials Variability Constant

Compared Composite Pay Factors

Increase in 15 from Within to Between Lab Case

		Standard Deviations (1S)					
Property	Test Method	Within Lab	Between Lab	Increase from Within to Between Lab			
Asphalt Content	AASHTO T308	0.04	0.06	0.02			
Density	AASHTO T166/T209/T269	0.51	1.09	0.58			
Air Voids	AASHTO T166/T209/T269	0.51	1.09	0.58			
19.0 mm	AASHTO T27	2.25	2.82	0.57			
2.0 mm	AASHTO T27	0.83	1.41	0.58			
0.425 mm	AASHTO T27	0.36	0.73	0.37			
0.075mm	AASHTO T27	0.14	0.31	0.17			

Reduction in PWL and PF from Within to Between Lab Case

Characteristic	Weighting	Standard Deviation		Percent Within Limits (PWL)			lual Pay ctor	Composite Pay Factor	
Characteristic	Factor	Within Lab	Between Lab	Within Lab	Between Lab	Within Lab	Between Lab	Within Lab	Between Lab
Asphalt Content	50	0.19	0.21	90.0	86.0	1.000	0.980		
Density	50	1.90	2.48	90.0	78.0	1.000	0.940		
Air Voids	50	0.82	1.40	90.0	64.0	1.000	0.870		
19.0 mm	10	3.10	3.67	90.0	82.0	1.000	0.960	1.00	0.94
2.0 mm	15	2.53	3.11	90.0	80.0	1.000	0.950		
0.425 mm	15	2.53	2.90	90.0	84.0	1.000	0.970		
0.075mm	15	1.26	1.43	90.0	84.0	1.000	0.970		

Laboratory Accreditation

Quality of Test Results in non-AASHTO Accredited labs

- STD Labs and STD Qualified Labs (Via STD IA Program)
 - Mix Design Verification Problems
 - STD and Industry Round Robin
 - "Blind" Study of Compacted Mix Gmb Variability

STD/Industry Round Robin

15 Participating Laboratories STD, Consultants, and Contractors All Labs STD IA Program Qualified 1 Material/Mixture Rigorous QC in Sample Preparation 10 Specimens per Laboratory Compact all 10 ♦5 - Gmb in Lab 5 – Gmb by DOT Central Lab Compactor Calibration Performed/Verified **Prior to Study**

Participating Labs (15 Total)

Participating Lab	STD IA Certified	AASHTO Accredited
STD Central Lab	Yes	Yes
STD District Lab 1	Yes	No
STD District Lab 2	Yes	No
STD District Lab 3	Yes	No
Industry Lab 1	Yes	No
Industry Lab 2	Yes	No
Industry Lab 3	Yes	Yes
Industry Lab 4	Yes	Yes
Industry Lab 5	Yes	No
Industry Lab 6	Yes	No
Industry Lab 7	Yes	Yes
Industry Lab 8	Yes	Yes
Industry Lab 9	Yes	Yes
Industry Lab 10	Yes	Yes
Industry Lab 11	Yes	No

Gmb & %AV Statistical Analysis

ANOVA - STD Qualified vs. AASHTO Accredited

Lab Accreditation Significant? YES
 Variability in STD Qualified ~ Double AASHTO Accredited
 All Extreme Data in STD Qualified Labs

Paired t-Tests of Means (SPLIT SAMPLES)

- 105 paired t-tests
- 53 of 105 Significant (Over 50%)

Air Void Differences (Same Gmm)

- ◆ 57% of Between Lab Comparisons ≥ 1.0%
- ◆ 27% of Between Lab Comparisons ≥ 2.0%
- Mix Design Verification

ALL Labs Should Be AASHTO Accredited!

Between Lab %AV Differences

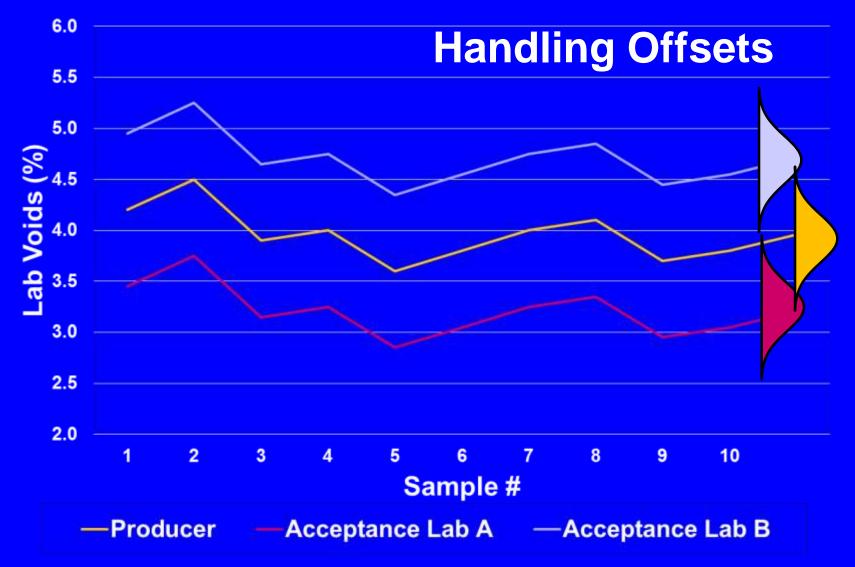
Bold = >1.0%
Difference in Air Voids

Red = > 2.0%
Difference in Air Voids

							L	aborate	ory Nu	mber						
		11	15	19	20	24	28	33	47	54	63	86	101	102	103	104
	11		1.1	0.4	0.3	1.8	1.7	1.0	0.5	1.0	1.5	0.5	1.6	0.1	0.9	1.8
	15	1.1		0.7	1.4	0.7	2.8	0.1	0.0	2.1	1.4	0.6	1.5	1.0	0.2	0.7
	19	0.4	0.7		0.7	1.4	2.1	0.6	0.7	1.4	2.1	0.1	2.2	0.3	0.6	1.4
	20	0.3	1.4	0.7		2.1	1.4	1.3	1.4	0.7	2.8	0.8	2.9	0.4	1.2	2.1
ber	24	1.8	0.7	1.4	2.1		3.5	0.8	0.7	2.8	0.7	1.3	0.8	1.7	0.9	0.0
Number	28	1.7	2.8	2.1	1.4	3.5		2.7	2.8	0.7	4.2	2.2	4.3	1.8	2.6	3.5
Z Z	33	1.0	0.1	0.6	1.3	0.8	2.7		0.1	2.0	1.5	0.5	1.6	0.9	0.1	0.8
tor	47	0.5	0.0	0.7	1.4	0.7	2.8	0.1		2.1	1.4	0.6	1.5	1.0	0.2	0.7
ora	54	1.0	2.1	1.4	0.7	2.8	0.7	2.0	2.1		2.5	1.5	3.6	0.7	1.9	2.8
Laboratory	63	1.5	1.4	2.1	2.8	0.7	4.2	1.5	1.4	2.5		2.0	0.1	2.4	1.6	0.7
Γ	86	0.5	0.6	0.1	0.8	1.3	2.2	0.5	0.6	1.5	2.0		2.1	0.4	0.4	1.3
	101	1.6	1.5	2.2	2.9	0.8	4.3	1.6	1.5	3.6	0.1	2.1		2.5	1.7	0.8
	102	0.1	1.0	0.3	0.4	1.7	1.8	0.9	1.0	0.7	2.4	0.4	2.5		0.8	1.7
	103	0.9	0.2	0.6	1.2	0.9	2.6	0.1	0.2	1.9	1.6	0.4	1.7	0.8		0.9
	104	1.8	0.7	1.4	2.2	0.0	3.5	0.8	0.7	2.8	0.7	1.3	0.8	1.7	0.9	
					•	-	•	•	•	•					-	

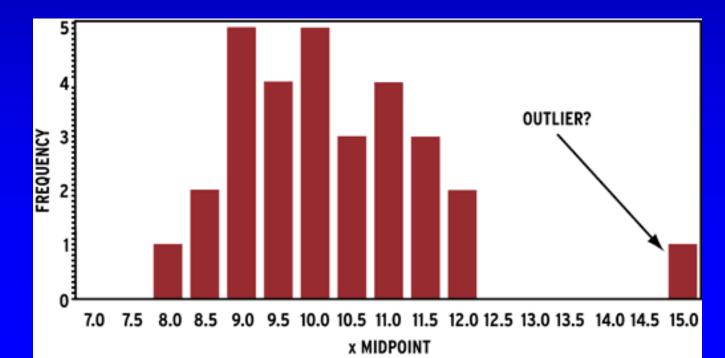
Laboratory Accreditation

It is a Priceless Investment State DOT vs. AMRL AMRL is Best Contractor or SHA Central Labs Only NOT Enough Internal Controls Proficiency Sample Programs


Correct Between Lab Bias BEFORE Doing a Job!

Technician Qualification

Qualification Important Perceived Cost Significant Lack of Appreciation for Importance Who Bears Risk With High Testing Variability? **Owner? Consultant?** Material Producer/Contractor? Rigor of Processes Good Examples Texas, Colorado, and Arizona


Another Priceless Investment

Producing for Multiple Customers

Dispute Resolution

Need for Outlier Definition – "Wacky or Flyer"
Need for Outlier Detection Tool
ASTM E178 or some other criteria
Need for Re-test Provision – Test whole sample or individual test? Split or independent sample...

66

Fraud

NCHRP Project
ARI Postings
Request Outlier/Re-Test Provisions

ASTM
Arizona

 WE are the Keepers of Industries Integrity Perception!
 Dispute Resolution Provisions Help US

- Many Agencies Using Stat Based Quality Assurance Specs with Pay for Quality Objective
- Increased Contractor Responsibility with Reduced Agency Demands

Specs More Complicated than Meet the Eye due to

- Lack of Relationships between Quality and Pavement Performance
- Subjective Engineering Judgment in Selection of Many Specification Parameters

Influence of Variability and Spec Limits Critically Important

Reducing Sampling & Testing Variability

Increase Sampling/Testing Frequency Change Sampling Location Change Sampling and/or Splitting Methods Technician Training Technician Certification (Qualified Workforce) Laboratory Accreditation (AMRL) **Regionalize/Standardize Test Methods Regionalize/Standardize Test Method Options Proficiency Sample Programs (Round Robins)** Use Single (QC or QA or IA) Data Source

Note Many Engineering Judgment Calls

Cooperative Spec Development & Refinement Knowledgeable Spec Developers - Use Shadow Approach Refine Specs Over Time Knowledge/Experience/Equipment Improvements Use Rational Analysis (Avoid Arbitrary Changes) • Support Efforts to Minimize σ_s and σ_t Support Efforts to Develop Relationships between Quality and Pavement Performance Develop Databases as Basis for Future Changes Support Lab Accreditation Support Technician Certification

Thank You and Discussion

Adam Hand (775) 784-1439 adamhand@unr.edu

