
1

DEPARTMENT OF CIVIL ENGINEERING AND CONSTRUCTION

BRADLEY UNIVERSITY

.

Illinois Asphalt Pavement Association

Scholarship Research Report

Neural Network Modeling of Pavement Rutting through Climate Data

Eric Winkelman

Senior Civil Engineering Student

January 23, 2023

2

ABSTRACT 3

INTRODUCTION 3

OBJECTIVE 4

MODEL TESTING 5

CONCLUSION 10

REFERENCES 10

APPENDIX 11

3

ABSTRACT

Pavement rutting negatively impacts vehicular travel by potentially damaging tires; this can

bring about an economic burden to both citizens and industry. The ability to predict pavement

rutting through an Artificial Neural Network (ANN) can ensure rutting is fixed before severe

damage to tires can occur. Climate and rutting data were collected from the Long Term

Pavement Performance (LTPP) database to model an ANN that can predict pavement rutting

accurately. An optimal model was determined through trial and error based on LTPP data from

pavement sections in the Midwestern United States. This model was able to predict rutting in

other pavement sections with high accuracy, which results in this method being a viable way to

predict pavement performance and the need for repairs.

INTRODUCTION

Rutting is a permanent deformation of pavement that occurs over time due to structural and

climate factors. When rutting occurs, a visible wheel path forms that can affect the lifespan of

pavement and tires. It is necessary to fix rutting in the pavement to prevent tire damage and

extend the life of a pavement structure. If a pavement structure is not repaired, it can result in

economic losses and negatively affect people's daily lives.

4

OBJECTIVE

This paper aims to determine the effectiveness of using an Artificial Neural Network (ANN)

model to predict pavement rutting due to climate factors. This will involve determining an

optimal model and measuring prediction error.

Artificial Neural Networks can be trained based on existing data and used to predict a desired

output variable. ANNs are helpful when there are several input variables; they can produce

regression data much more quickly than through numerical analysis. Various parameters can be

adjusted when creating ANNs. Hidden layers, neurons, training sets, and activation functions can

be used to create and train an ANN.

Climate and rutting data were collected from the Federal Highway Administration’s Long Term

Pavement Performance (LTPP) database. LTPP includes records of pavement designs, traffic

counts, climate, and performance over time. This data is collected for specific pavement sections

designated by road signs and codes; a sample sign is located in Figure 1 below. For this paper,

existing climate and rutting data from fifteen sections in the Midwestern United States will be

used to train an ANN to predict pavement rutting.

Figure 1. LTPP Designated Pavement Section

5

MODEL TESTING

To create the model, pavement sections from the Midwest were selected so that all data used

came from a similar climate zone. The sections selected from the LTPP database all had asphalt

surface courses; these sections also contained several years of rutting data. Rutting

measurements were compiled into an output spreadsheet in order for the ANN to have a model

for output prediction. The following variable data was compiled into a separate spreadsheet and

used as the ANN inputs: Annual Average Precipitation, Annual Average Temperature, Annual

Average Freeze Index, Annual Average Humidity, AADTT, 18-Kip ESAL, and Time. These

inputs were used to train an ANN to match the measured rutting output data.

The inputs pass through a set of neurons within hidden layers to collect the predicted rutting

output data. The neurons process the input data by calculating its weighted averages using an

activation function. There are three activation functions MATLAB uses: tansig, logsig, and

purelin. The algorithms of each activation function are as follows:

𝑡𝑎𝑛𝑠𝑖𝑔(𝑥) =
2

1 + 𝑒−2𝑥
− 1

𝑙𝑜𝑔𝑠𝑖𝑔(𝑥) =
1

1 + 𝑒−𝑥

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥

A training ratio of 70% Training Data, 15% Test Set, and 15% Validation Set was used to create

the model. For all models, 20 iterations were conducted to train the network. To find the

optimum number of neurons, models were tested using different activation functions with the

number of neurons in one hidden layer ranging from 2-10. The tansig and logsig activation

functions were used for testing in one hidden layer, since the purelin activation function would

return negative predicted rutting values. Root Mean Square Error (RMSE) and Mean Absolute

6

Percentage Error (MAPE) were calculated based on the predicted output to validate the models'

accuracy. To calculate the RMSE and MAPE, the model was used to compare predicted and

actual rutting on all the selected LTPP pavement data. A model with a MAPE of less than 10% is

considered ideal; the results of the models are displayed in Table 1 below.

Table 1. One-Layer Model Testing

Neurons
Tansig Logsig

RMSE MAPE RMSE MAPE

2 1.2736 13.5558 0.8660 10.2541

3 0.6721 10.9080 0.9013 10.0982

4 0.4761 8.8244 3.0750 8.8974

5 0.5919 4.1720 0.7380 6.0550

6 0.3875 5.5907 0.5920 9.7622

7 0.4498 4.5445 0.4003 9.9364

8 0.3607 9.1473 0.5313 8.3269

9 0.3861 4.0959 0.4188 8.8081

10 0.3646 8.5192 0.4213 10.6675

It can be determined from this data that a 9-neuron model using the tansig activation function

provides the greatest level of accuracy. This model results in the smallest MAPE, with a

calculated value of approximately 4.1%. Further modeling can be done with more hidden layers

and a combination of activation functions; 9 neurons were used in each layer for both 2 hidden

layer and 3 hidden layer models. Table 2 displays the results of 2 hidden layer models with 9

neurons in each layer.

7

Table 2. Two-Layer, 9-Neuron Model Testing

Function Combination RMSE MAPE

Tansig-Logsig 0.4105 4.0774

Tansig-Tansig 0.3758 8.7079

Tansig-Purelin 0.3881 8.0212

Logsig-Logsig 0.4298 8.9044

Logsig-Tansig 0.4104 9.1728

Logsig-Purelin 0.4930 6.9111

Purelin-Logsig 0.3857 7.1775

Purelin-Tansig 0.3986 11.2639

From this data, the tansig-logsig function combination provides the smallest MAPE,

approximately 4.08%. This MAPE is lower than the one-layer, 9-neuron tansig model result. One

more set of trials was run using three hidden layers with 9 neurons in each layer. Table 3

contains the results of the three-layer tests.

Table 3. Three-Layer, 9-Neuron Model Testing

Function Combination RMSE MAPE

Tansig-Logsig-Logsig 0.3842 9.3802

Tansig-Tansig-Tansig 0.3199 9.1397

Tansig-Purelin-Purelin 0.4549 6.7588

Logsig-Logsig-Logsig 0.4095 9.2333

Logsig-Tansig-Tansig 0.4049 8.3873

Logsig-Purelin-Purelin 0.3883 11.1597

Purelin-Logsig-Logsig 0.4449 7.2254

Purelin-Tansig-Tansig 0.3471 6.9468

8

The three-layer function combined with the smallest MAPE is the tansig-purelin-purelin model,

which is approximately 6.8%. This indicates that out of all the models tested, the two-layer, 9

neurons, tansig-logsig model results in the highest accuracy for predicting pavement rutting. The

MATLAB code for the ANN model is located in the Appendix section; a graphical

representation of the 7-9-9-1 model is depicted in Figure 2 below.

Figure 2. Diagram of 7-9-9-1 Model

Predicted rutting values from the 7-9-9-1 model are displayed in Figure 3 below. The predicted

rutting is compared against the actual rutting from the Evansville, IN, pavement section. From

the figure, the linear trend line of the predicted values contains similar results to the actual

rutting values. Figure 4 displays the predicted rutting values of all the input data used to create

9

the model. Ideally, the predicted and actual values should align to form a linear trend line. There

is some deviation with the model, but the R-squared value of 0.9516 indicates that this model

should produce accurately predicted rutting values for pavement sections in the Midwestern

United States.

Figure 3. Comparison of Rutting on I-64 Section in Evansville, IN

Figure 4. Comparison of Measured Rutting to Predicted Rutting

R² = 0.9817

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2010 2012 2014 2016 2018 2020 2022

L
o

gn
o

rm
al

 R
u

tt
in

g
(m

m
)

Time

Rutting due to Climate Factors

Actual Rutting Predicted Rutting Linear (Predicted Rutting)

R² = 0.9974

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

L
o

gn
o

rm
al

 P
re

d
ic

te
d

 R
u

tt
in

g
fr

o
m

 A
N

N

(m
m

)

Lognormal Measured Rutting from LTPP (mm)

Comparison of Rutting in Pavement Sections

10

CONCLUSION

Predicting rutting accurately can aid state Departments of Transportation forecast when to repair

rutting in pavement sections. The 7-9-9-1 ANN model used to predict rutting produces favorable

results. This model is best used to predict rutting in pavement sections in the Midwestern United

States. Modeling can also be done in pavement sections across various regions of the world.

Further modeling could be performed on specific types of roads, such as arterials, local roads,

and freeways.

REFERENCES

[1] M. Hossain, L. Gopisetti, M. Miah, Artificial Neural Network Modeling to Predict

International Roughness Index of Rigid Pavements, Springer, International Journal of Pavement

Research and Technology, 2020

[2] M. Hossain, L. Gopisetti, M. Miah, International Roughness Index Prediction of Flexible

Pavements Using Neural Networks, ASCE, 2018, DOI 10.1061/JPEODX.0000088

[3] A. Ammari, MATLAB Code of Artificial Neural Networks Estimation, High Business

School of Tunis, University of Manouba, Tunisia, 2016

11

APPENDIX

%% Data Input and Preparation
clc; clear; close all;
in=xlsread('_MasterData_Input_Days.xlsx'); % Input File
out=xlsread('_MasterData_Output.xlsx'); % Output File
data = [in out];
input=[1 2 3 4 5 6 7]; % Input Layers
p=data(:,input);
output=[8]; % Output Layer
t=data(:,output);
p=p'; t=t';

% Transposing Matrices
t = log(t+1);

% Defining Validation Dataset
trainRatio1=0.7;
valRatio1=0.15;
testRatio1=0.15;

% Network Definition
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
nnn1=1; % First Number of Neurons in the Hidden Layer
nnnj=1; % Jump in Number of Neurons in the Hidden Layer
nnnf=9; % Last Number of Neurons in the Hidden Layer
net1.trainparam.lr=0.1;
net1.trainParam.epochs=500;

% Training Network Iterations
it = 20;

% Max Number of Iteration
ii = 0;
netopt{:}=1:nnnf;
for nnn=nnn1:nnnj:nnnf
 ii=ii+1; nnn;
 net1=newff(p,t,[nnn nnn]); % No. Hidden Layers
 evalopt(ii)=100;
 for i=1:it
 [net1,tr,y,et]=train(net1,p,t);
 net1.layers{1}.transferFcn = 'tansig'; % First Activation Function
 net1.layers{2}.transferFcn = 'logsig'; % Second Activation Function
 net1.divideParam.trainRatio=trainRatio1;
 net1.divideParam.valRatio=valRatio1;
 net1.divideParam.testRatio=testRatio1;
 estval=sim(net1,p(:,tr.valInd));
 eval=mse(estval-t(:,tr.valInd));
 if eval<evalopt(ii)
 netopt{(ii)}=net1;
 tropt(ii)=tr; evalopt(ii)=eval;
 end
 end
end

12

%% Error Plot
plot(nnn1:nnnj:nnnf,evalopt)

%% Output
nn = 1;
ptrain=p(:,tropt(nn).trainInd);
ttrain=t(:,tropt(nn).trainInd);
esttrain=sim(netopt{nn},ptrain);
ptest=p(:,tropt(nn).testInd);
ttest=t(:,tropt(nn).testInd);
esttest=sim(netopt{nn},ptest);
pval=p(:,tropt(nn).valInd);
tval=t(:,tropt(nn).valInd);
estval=sim(netopt{nn},pval);
estwhole=sim(netopt{nn},p);

% Calculation of RMSE
e = t-y;
pre_MAPE = abs((y-t)./t);
MAPE = mean(pre_MAPE(isfinite(pre_MAPE)))*100
RMSE = (mse(net1,t,y,'regularization',0.1))^(1/2)

% Transpose for Excel
t=t';
y=y';

%% Visuals
view(net1)
%figure; plot(ttrain,esttrain,'.b');
%figure; plot(tval,estval,'.g');
%figure; plot(ttest,esttest,'.r');
%figure; plot(t,estwhole,'.k')
figure;
plotregression(ttrain,esttrain,'Train',tval,estval,'Validation',ttest,esttest,'Test',
t,estwhole,'Whole Data');

