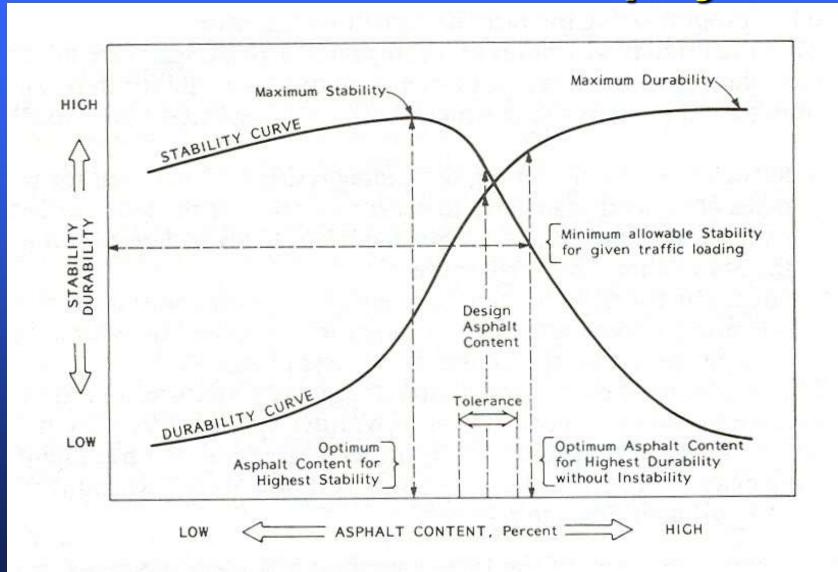
Reducing Mix Designs: Using a Single N_{design}

Brian D. Prowell, PhD, PE

Original SGC Compaction Effort

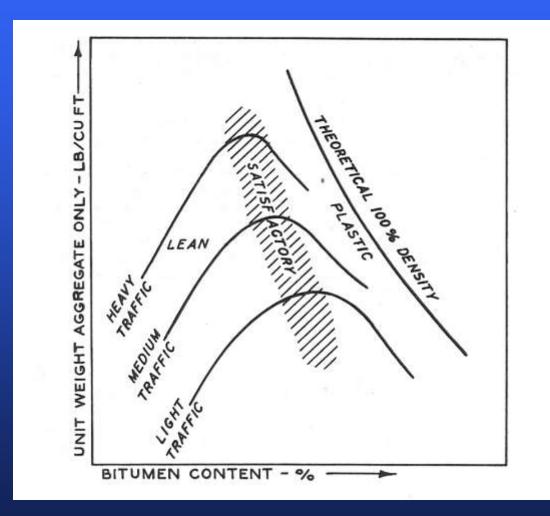

Design		Average Design High Air Temperature										
ESALs	<39 °C			39 - 40 °C		41 - 42 °C		43 - 44 °C				
(millions)	N ini	N des	N _{max}	N _{ini}	N _{des}	N _{max}	N _{ini}	N _{des}	N _{max}	N _{ini}	N _{des}	N _{max}
< 0.3	7	68	104	7	74	114	7	78	121	7	82	127
0.3 - 1	7	76	117	7	83	129	7	88	138	8	93	146
1 - 3	7	86	134	8	95	150	8	100	158	8	105	167
3 - 10	8	96	152	8	106	169	8	113	181	9	119	192
10 - 30	8	109	174	9	121	195	9	128	208	9	135	220
30 - 100	9	126	204	_ 9	139	228	9	146	240	10	153	253
> 100	9	143	233	10	158	262	10	165	275	10	172	288

Illinois DOT N_{design} Table

20-Year Design ESALs	Nini	Ndes / 2 diff. mix
<0.3	6	30
0.3 to 3	6	50
3 to 10	7	70
10 to 30	8	90
> 30	8	105

Four NMAS

Hveem's Philosophy



Vallegra and Lovering, AAPT, 1985

The compaction effort used in a volumetric mix design should produce laboratory samples which approximate the ultimate density of the pavement

Ortolani and Sandberg, Jr. AAPT, 1951

McRae's Tiered Approach

AAPT, 1958

Conclusions on In-Place Density from Literature

- In-place density may be the single factor that most affects the performance of a properly designed mixture
- A mediocre mix, well constructed with good in-place air voids, will often perform better than a good mix that has been poorly constructed
- In-place density, between 92 and 97 % Gmm for dense and fine graded mixes will generally provide good performance
- In-place density > than 93 to 95 % of Gmm may be required for coarse-graded or larger NMAS mixtures to limit permeability

National Efforts to Address N_{design}

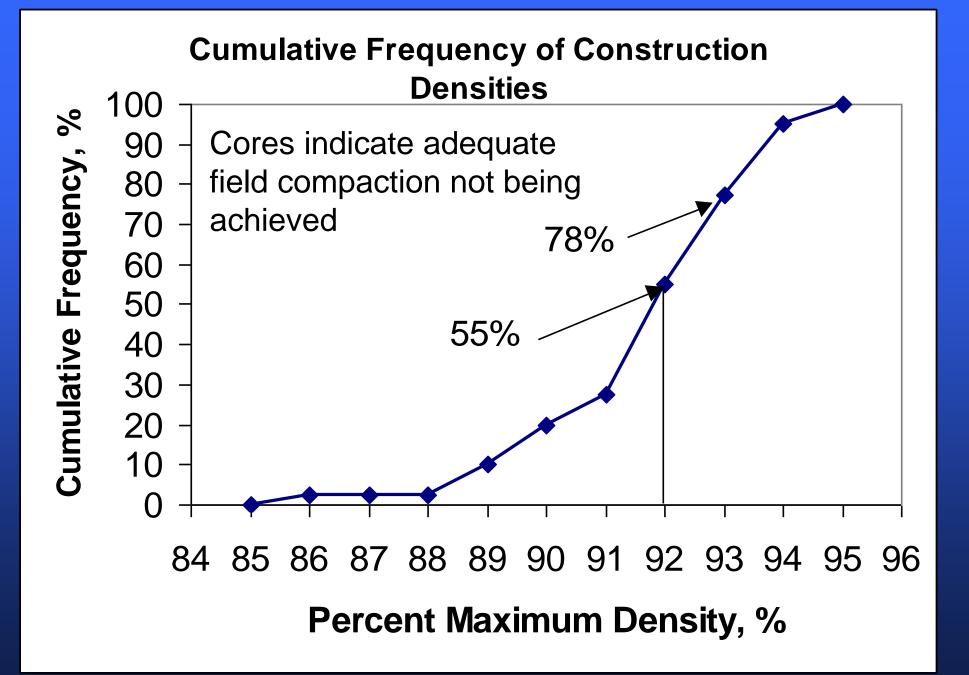
- Asphalt Institute N_{design}II Experiment
 - Examined field densification of SPS-9 pavements
 - Looked at mixture stiffness (G*) with SST
- NCAT NCHRP 9-9 Evaluation of the SGC Procedure
 - Looked at sensitivity of mix volumetrics to changes in N_{design} 25 gyration = approx. 1% VMA
- A new N_{design} Table was developed from each effort

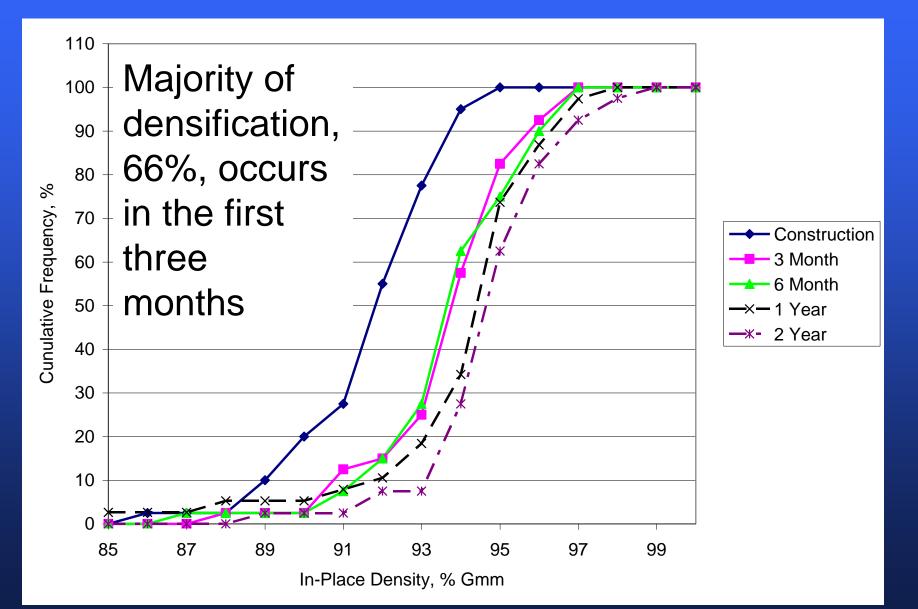
SGC	Compa	action l	Effort 1	999
ESAL's	N _{ini}	N _{des}	N _{max}	App
< 0.3	6	50	75	Light
0.3 to < 3	7	75	115	Medium
3 to < 30	8	100*	160	High
10 to <30	8	100	160	High
≥ 30	9	125	205	Heavy

Base mix (< 100 mm) option to drop one level, unless the mix will be exposed to traffic during construction.

NCHRP 9-9(1) Objectives

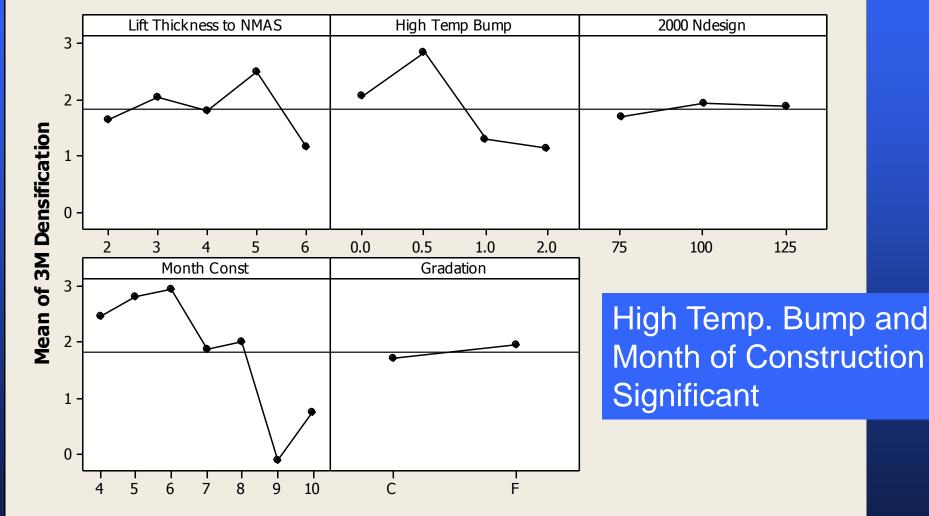
- Evaluate field densification of Superpave designed mixes
- Verify or determine Ndesign levels to maximize field performance
- Evaluate locking point concept, Ninitial and Nmaximum


NCHRP 9-9 (1): Field Project Locations


Experimental Plan

- Loose mix compacted on-site (no reheating) in Pine AFG1a and Troxler 4141
- Targeted three samples at each project with three replicates for each sample
- Roadway cores taken at construction, 3 months, 6 months, 1 year, and 2 years after construction from right wheel path
- Project extended to monitor projects 4 years after construction

NCHRP 9-9 (1) Findings



Pavement Densification

Factors Affecting 3-Month Densification

Main Effects Plot (fitted means) for 3M Densification KY-1 Eliminated

Ultimate Density

- Overall average 2- and 4-year in-place density both = 94.6%
- 4-year density less than 2-year density in 15 of 35 cases
- Paired t-test significantly different in 8 cases, 4-year density higher in 6 of 8 cases
- Population t-test significantly different in one case, density lower
- Ultimate density reached after 2-years

Summary of Field Performance of NCHRP 9-9(1) Projects

- Average rut depth 1.7 mm, one project with 6.4 mm (high traffic, unmodified)
- Raveling common
- Overlays over PCC evidence reflective cracking, even when total (new) overlay 3.5 inches or more, most after 2-years
- Joints vary from fair to very good
- Some permeability evidenced by wet spots

Model Developed Based on % of Lab Density

- Model developed to predict % of lab density, based on as-constructed density, HGP and traffic (R²=0.53)
- Number of gyrations to match % of lab density similar for all mixes (STD approximately 8)

 $Ndesign = 16.8 - 1.27 \times HPG + 20.1 \times Log(20 Year ESALs)$

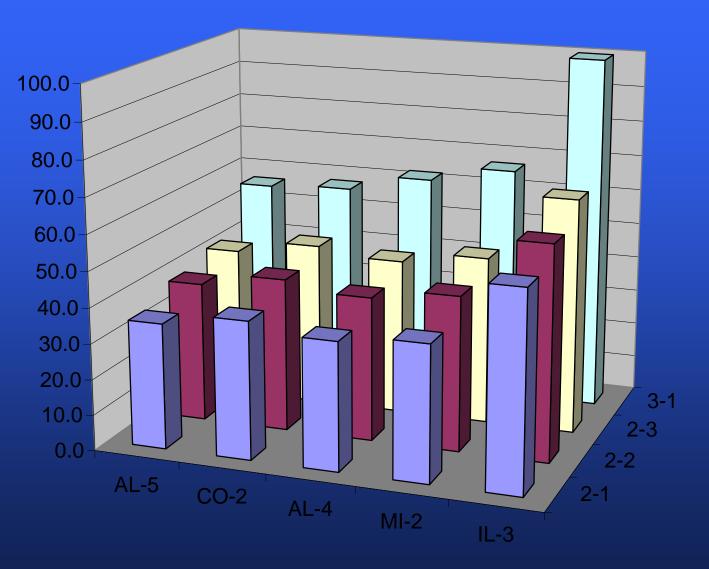
HPG = High temperature binder grade R^2 =0.97, SE = 3.54

NCHRP 9-9(1)Recommended Ndesign Table Proposed Ndesign Levels for an SGC DIA of 1.16 ± 0.02 Degrees

	2-Year Design	Ndesign	Ndesign PG
20-Year Design	Traffic, ESALs	Unmodified	76-22
Traffic, ESALs			
< 300,000	< 30,000	50	NA
300,000 to	30,000 to 230,000	65	50
3,000,000			
3,000,000 to	230,000 to 925,000	80	65
10,000,000			
10,000,000 to	925,000 to	80	65
30,000,000	2,500,000		
> 30,000,000	> 2,500,000	100	80

Based on equation to predict Ndesign at 92% ACD

Locking Point


- Concept developed by Illinois DOT (Bill Pine)
- Plot of Log gyrations vs. density non-linear beyond locking point
- Point where aggregate locks together additional gyrations degrade aggregate
- Point after which change rule 25 gyrations = 1% VMA = 0.4 AC% generally true

Definition of Locking Point

	1	2	3	4	5	6	7	8	9	10
60	111.9	111.9	111.8	111.8	111.7	111.7	111.6	111.6	111.5	111.5
70	111.4	111.4	111.3	111.3	111.2	111.2	111.2	111.1	111.1	111.0
80	111.0	110.9	110.9	110.8	110.8	110.8	110.7	110.7	110.7	110.6

Locking Point

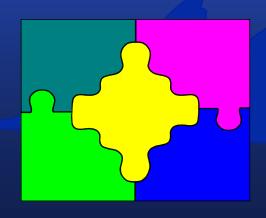
Pine Locking Point

Effect of Design Compaction

	Property	Increased Ndesign	Decreased Ndesign
	Coarse Aggregate	Increased demand for	Reduced demand for
	Angularity	crushed aggregate	crushed aggregate or no
	Minimums	set by aggregate Reduce natural sand	properties
	Fine aggregate	Reduce natural sand	Reduced need for
	angularity		manufactured sand or no
			change
	Gradation	Change to increase VMA	Change to reduce VMA
			or no change
	Air Voids	No effect	No effect
-	Voids in Mineral	No effect after mix	No effect after mix
	Aggregate	adjustment	adjustment
	Voids filled with asphalt	Little or no change	Little or no change
	Compaction on road	More difficult	Less difficult
	Mixture stiffness	Increased stiffness	Decreased stiffness
Hube	er and Anderson AAPT		

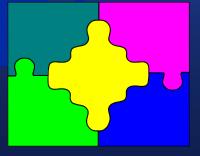
How Does This Mesh with NCHRP 9-25/31?

- In-place air voids
 - Each 1% decrease in air voids decreases the rutting rate by 18%
 - Increasing air voids decreases fatigue life
- Increase aggregate fineness by 10 (FM₃₀₀) decreases rutting rate by a factor of 2
 - $FM_{300} = \sum$ (percent passing 0.300, 0.150, and 0.075 mm sieves)
- Increase high temperature PG by one grade decreases rutting rate by a factor of 2.5
- Increase N_{design} by 25 gyrations decrease rutting rate by 15 to 25%
 Increasing required compaction energy produces a better mix, If you can get the mix compacted


What are other States doing?

23 states have altered N_{design} levels (Gibson)

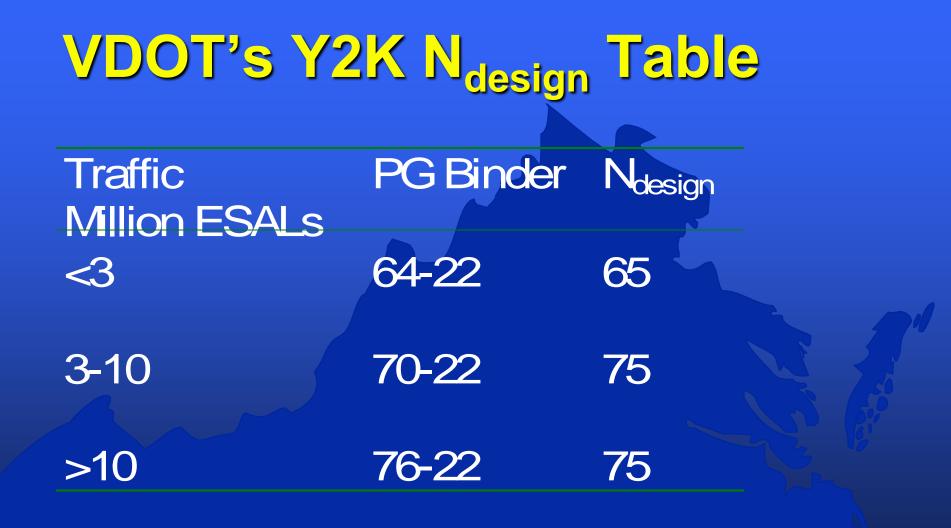
Florida


Traffic Level	Design Traffic, million ESALs	FDOT N _{design}	Current AASHTO N _{design}
A	< 0.3	50	50
В	0.3 to <3	75	75
С	3 to <10	75	100
D	10 to <30	100	100
E	≥30	100	125

Changes in VDOT's Specifications adopted in 2000

Pieces of the Puzzle

- VDOT's experience with 75-blow Marshall mixes indicated the mixes were rut resistant, but durability suffered
- Early Superpave test sections produced at low voids (accidentally) have not rutted

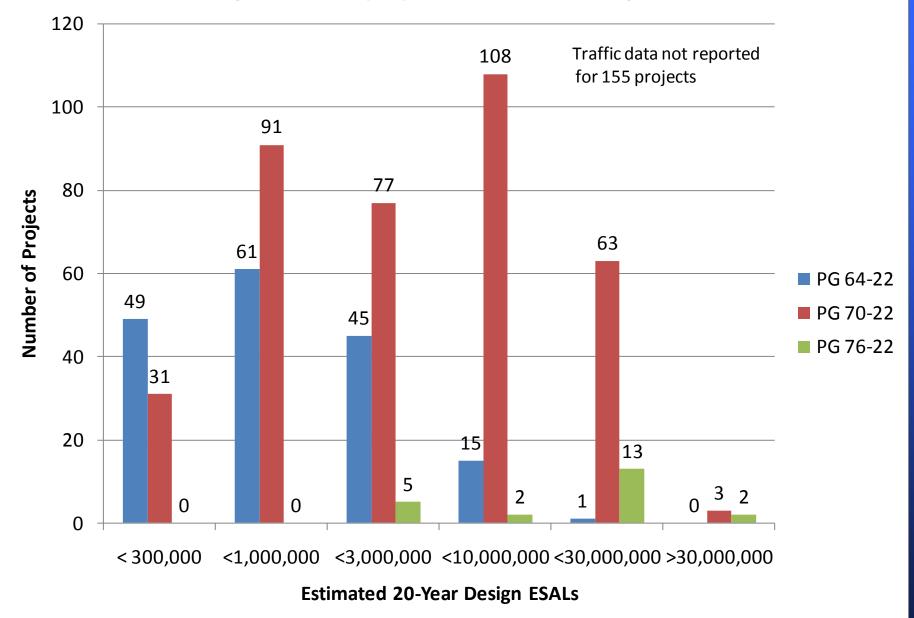

More Pieces of the Puzzle

- Asphalt Pavement Analyzer
 - Indicates binder stiffness can provide rut resistance without sacrificing durability
 - Correlated with field performance (WesTrack)
 - Criteria developed to monitor field mixes
- Four year history of binder "bumping" with 50-blow Marshall mixes

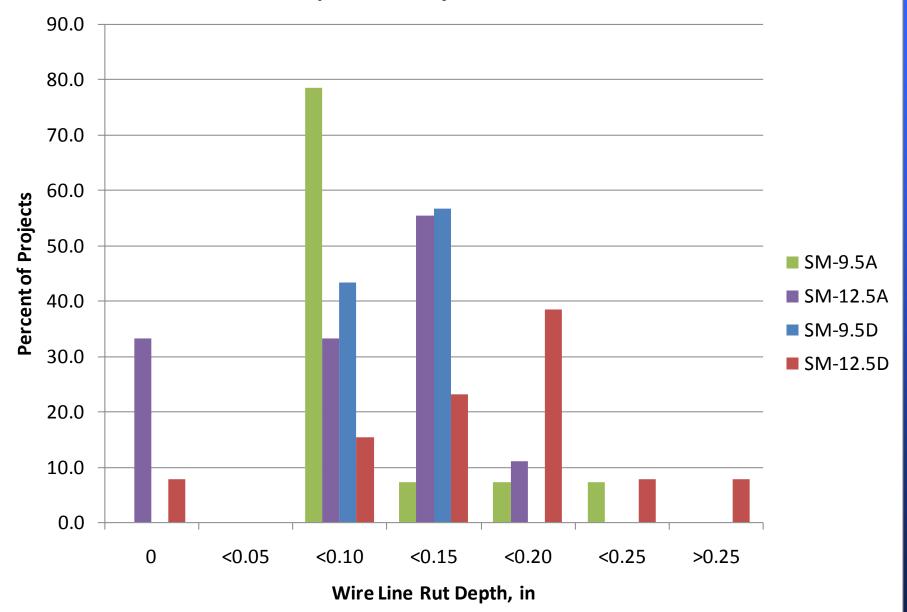
Last Pieces of the Puzzle

Asphalt Institute Ndesign II experiment

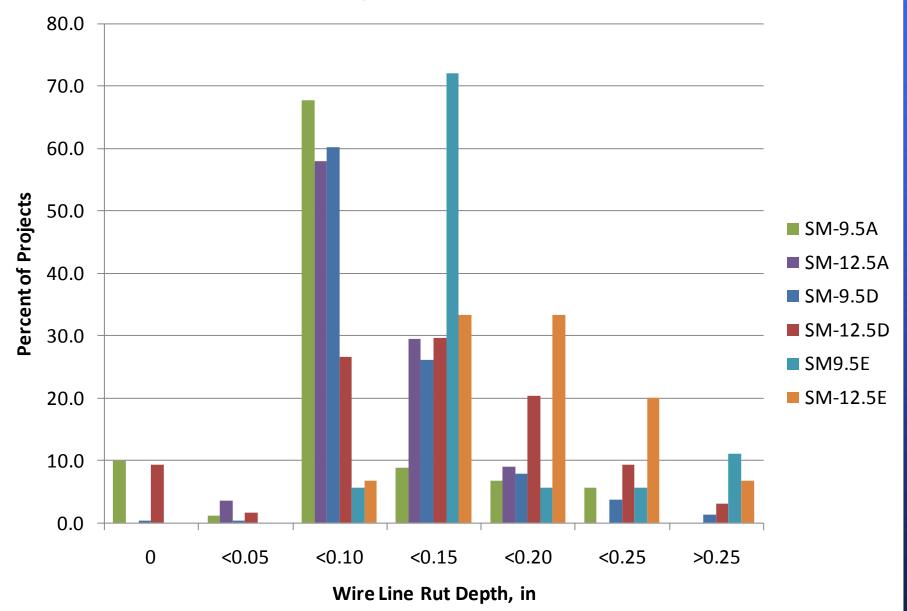
- Suggested lower gyrations based on mixture stiffness and field performance
- Suggested 1 binder grade = approximately 20-30 gyrations in mixture stiffness
- NCAT survey of early sections suggested no rutting, mixes dry



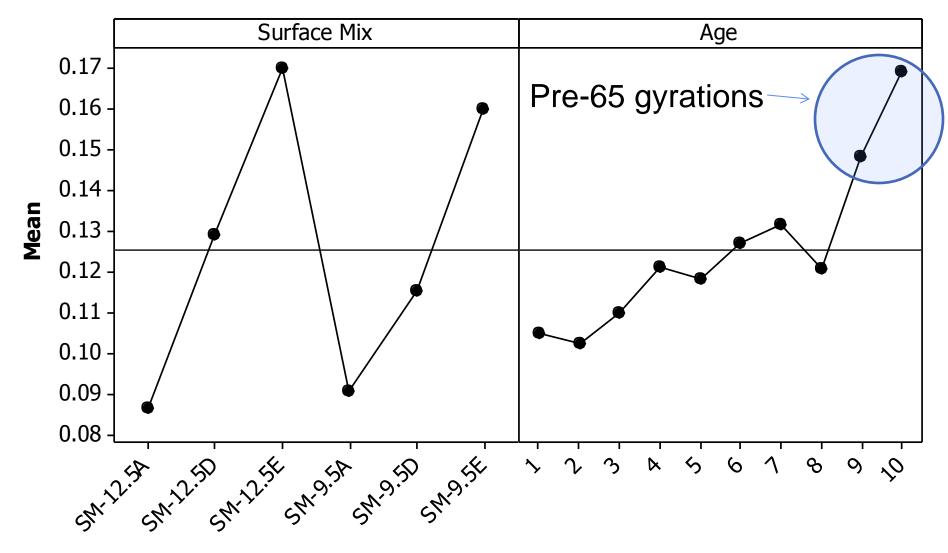
Typically do not use 20 year design life


Virginia

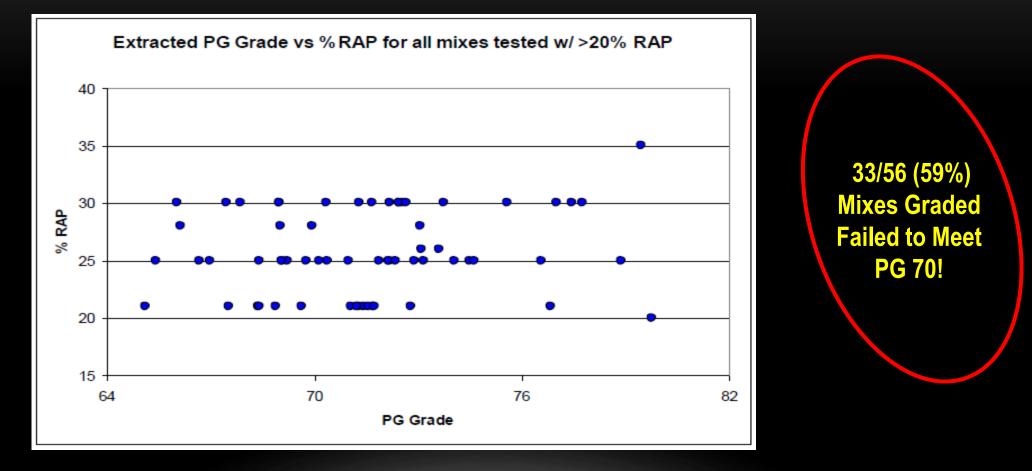
- Adopted 65 and 75 gyrations in 2000
- Adopted 65 gyrations for all mixes in 2001
- Use PG 64-22 (A), PG 70-22 (D), and PG 76-22 (E), depending on traffic speed/level
- Have continued to look at ways to increase AC%


Virginia DOT Superpave Database through 2007

2007 Rut Depths for Projects Constructed in 2001



2007 Data for Projects Constructed from 1998-2007



Main Effects Plot for W_Rut (in)

Fitted Means

TRUE GRADE OF RECOVERED RAP MIX BINDER

VIRGINIA SUPERPAVE IMPLEMENTATION

VDOT's Binder Specifications

TABLE II-14A Recommended Performance Grade of Asphalt Cement

	Percentage of Reclaimed Asphalt Pavement (RAP) in Mix				
Mix Type	%RAP ≤ 25.0%	25.0% < %RAP ≤ 30%	25.0% < %RAP ≤ 35%		
SM-4.75A, SM-9.0A, SM-9.5A, SM-12.5A	PG 64-22	PG 64-22			
SM-4.75D, SM-9.0D, SM-9.5D, SM-12.5D	PG 70-22	PG 64-22			
IM-19.0A	PG 64-22	PG 64-22			
IM-19.0D	PG 70-22	PG 64-22			
BM-25.0A	PG 64-22		PG 64-22		
BM-25.0D	PG 70-22		PG 64-22		

Based on rut testing performed by the Department and/or field performance of the job mix, the Engineer reserves the right to require adjustments to the job-mix formula.

December 18, 2012 Special Provision

ALDOT Specifications 2007

ESALs	Base and Lower Binder	Surface and Upper Binder
< 1 million	50	65
1 to 10 million	65	80
10 to 30 million	80	80

Use lesser of locking point (> 60) or specified

Alabama

- Experimented with NCHRP 9-9(1) gyration levels and locking point.
- Currently specify N_{design} = 60 gyrations for all traffic levels.
- Increased VMA
 - 0.5% for mixes with gradations below restricted zone
 - 1.5% for mixes with gradations above the restricted zone

GA DOT

Special Provision for Locking Point

- Level I two-way AADT < 10,000
 Lesser of first locking point or 65 gyrations
- Level II > 10,000 AADT

Lesser of second locking point or 80 gyrations

2014

2005

Mixes designed at 65 gyrations

Conclusions

- Ultimate pavement density reached after 2 years
- N_{design} appears to be slightly high, no need for AASHTO 125 gyrations or Illinois 105 gyrations
- Virginia has successfully used a single gyration level since 2001, other states have followed.

Questions?

Contact Information: Brian Prowell Advanced Material Services, LLC 2515 E. Glenn Avenue, Suite 107 Auburn, AL 36830 (334) 246-4428 Brian@AMSLLC.US