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CHAPTER 1 

 
Introduction 

 
 A cooperative investigation to develop and refine End-Result Specifications (ERS) for 
asphalt pavement construction was conducted under the Illinois Cooperative Highway Research 
Program (ICHRP), Project R-23.  Specifications for asphalt pavement construction in Illinois 
have evolved from highly prescriptive material and method specifications, to quality control, 
quality assurance (QC/QA) specifications, and more recently to ERS on a demonstration basis.  
ERS demonstration projects have been led by the Illinois Department of Transportation’s (IDOT) 
Bureau of Materials and Physical Research (BMPR) and undertaken by the IDOT districts on a 
voluntary basis since the year 2000.   These comprehensive projects were focused on larger hot-
mix asphalt (HMA) projects (8,000 tons and higher), and often involved interstate or state 
highway resurfacing projects.   
 
One of the benefits of ERS is the introduction of true incentive/disincentive clauses for the 
control of material parameters that are believed to be linked to pavement quality. In Illinois the 
pavement qualities which determine payment are in-situ density, asphalt content, and plant air 
voids of plant-produced HMA. The use of an end-result approach gives the contractor more 
freedom in the attainment of those end-results, i.e., equipment choices, plant and field 
operations, etc., and therefore promotes contractor innovation and creates avenues for lower bid 
costs, while assuring material quality.  The introduction of payment incentive/disincentives 
requires regular material sampling and testing.  But more importantly, because ERS shifts some 
of the responsibility from the agency to the contractor, it is important to understand the relative 
risks assumed by each party in such a specification.  As will be demonstrated in this report, the 
existence of significant measurement device variability and measurement device bias increases 
the overall risk in an ERS system.    
 
Specification Risk 
 
 Most of the choices made in the development of an ERS have an effect on specification 
risk.  Risks are undertaken by both the contractor and agency.  The introduction of new 
specification criteria and/or the adjustment of certain specification attributes can shift the risk 
from the contractor to the agency and vice-versa.  In some cases, specification changes can 
widen or narrow the range of risk.   
 

Some of the key contributors to risk in ERS are: 
 

• Contractor testing versus agency testing 
• Frequency of testing and/or number of samples 
• Variability and/or bias of test device and/or test procedure 
• Specification parameters, including:  

o Specification limits 
o Pay factor equation 
o Pay “caps” 
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o Acceptance test frequency and acceptance tolerance 
o Third-party testing provisions 

 
Contractor risk must be controlled in order to arrive at fair payment, which would lead to lower 
and more consistent bid estimates over time, and would minimize disputes.  Agency risk must be 
controlled in order to ensure that high quality pavement is produced, so that desired 
serviceability and safety levels are maintained over the design life.  
 
 In the past, researchers have attempted to develop statistical or simulation tools to help 
understand and balance risks in asphalt construction specifications. A computer simulation 
program called OCPLOT, developed in FHWA Demonstration Project 89 by Weed (1996), is 
available for generating OC curves.  OCPLOT was found to be user-friendly and very useful for 
initial assessment of relative risks, allowing the user to vary the following factors: sample size, 
pay factor equation, specification limits, and retest provisions.  The program allows the user to 
assess the probability of acceptable material being rejected (defined as contractor risk) and the 
probability of rejectable quality material being accepted (defined as agency risk) over the long 
run.  However, a number of the factors that appear to be related to risk, including measurement 
device variability and testing bias, are not considered in OCPLOT.  In addition, it can be argued 
that the most tangible measurement of risk should be linked to the financial impact on the 
project, i.e., how risk affects what is actually paid versus what should have been paid.  Thus, one 
of the tasks in the ICHRP R-23 project involved the development of a simulation program that 
could be used to quantify and balance fiscally quantified risks, or payment risk, for the purpose 
of developing a rational and equitable end-result specification for asphalt pavement construction 
in Illinois. 
 
 One of the necessary steps in the assessment of payment risk is to clearly define the risk 
metric.  The one used in this project is very straight forward: 
 

Payment Risk = Payment made to the contractor – “Correct” payment 
 

Ideally, tests performed by different parties on the same material should give very similar 
results. However, in practice even split samples will show different results when the tests are 
carried out by two different agencies, or in two different labs. Because of these uncertainties 
there is a risk of accepting rejectable quality material and vice-versa.  

 
In the ERS approach, a percentage of acceptable quality (Percent Within Limits, or PWL) 

is determined, rather than pass/fail criteria used in typical QC/QA approaches (Figure 1.1).  
Payment is then made based on this percent within limits value (Patel, 1996).  Because of the 
uncertainties involved with the test results the payment made also may be more or less than what 
it would be if the actual quality of the construction would have been exactly determined (Weed, 
1996; Willenbrock, 1976; NCHRP, 1976; Barros et al., 1983; Puangchit et al., 1983; Afferton et 
al., 1992; AASHTO, 1995). Overpayment of the contractor is often referred to as “agency risk” 
while underpayment is often termed “contractor risk.”  Throughout this document, positive 
values of risk refer to the instance where the agency paid more than required (agency risk) and 
negative values of risk indicate that the agency paid less than what the contractor deserved 
(contractor risk). 
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Figure 1.1: Concept of Percent Within Limits (PWL) 
 
 
 
Outline of ICHRP R-23 Risk Analysis Research  
 

To address the need for estimating and analyzing payment risks in an ERS, researchers at 
the University of Illinois at Urbana-Champaign have developed a series of risk simulation 
models that provide the user a virtual environment to quickly generate and analyze thousands of 
realistic ERS data sets. The first simulation model developed was ILLISIM (Buttlar and 
Hausman, 2000). This was followed by PaySim and BiasSim (Aurilio et al., 2002) which used 
different models and catered to different aspects of risk analysis and simulation. The latest model 
developed is called Simulated Risk Analysis, or SRA. SRA combines the capabilities of each of 
the earlier programs into a single program, with added features to simplify the process of 
conducting sensitivity analyses.  
 
      Chapter 2 describes the development of these simulation models, starting with ILLISIM. 
ILLISIM takes input parameters such as measurement variability, production variability, mean 
production, sample size, and sampling technique, and generates data which simulate test results 
that are collected in the field or at the plant to assess construction quality for ERS. The generated 
data is based on the assumption that data collected in a typical construction project would be 
normally distributed (Hall and Williams, 2002).  Analysis is then performed on simulated data to 
estimate the contractor and agency payment risks, along with statistically determined confidence 

Lower 
Specification 

Limit 

Upper 
Specification 

Limit 

Percent Within
Limits 

Small Variability 

Large 

Percent Defective 

Large variability 



 10

intervals. ILLISIM was developed with a Microsoft Excel interface, with analysis code written in 
Visual Basic for Applications (VBA). Chapter 2 also describes the improvements in ILLISIM 
which resulted in a new program, called PaySim. PaySim used a different simulation engine 
based upon the chi-square distribution rather than normal distribution, which permitted 
simulations to be less time consuming, which was a concern with ILLISIM.  Furthermore, 
PaySim was coded in C++ and made into executable program, which also enhanced the 
processing speed considerably. The program, however, continued to utilize an MS Excel user 
interface.  
 

The development of a third version of the simulation program, called BiasSim, was 
necessitated with the recognition of the fact that bias in field measurements played a significant 
role in the risk involved with pay factors (Buttlar et al., 2001). BiasSim was exclusively 
dedicated to analysis of effects of bias on risk as described in Chapter 2. Finally, a unified 
simulation program was developed, which combined the capabilities of ILLISIM/ Paysim and 
BiasSim, called Simulated Risk Analysis (SRA), which is also presented in detail in Chapter 2.  

 
SRA has been extensively used to analyze Illinois Department of Transportation end-

result specifications. The analysis and results are presented in Chapter 3. Chapter 4 summarizes 
project activities and findings, presents study conclusions, and presents recommendations for 
futher study.  Additional details of the earlier models, namely ILLISIM, PaySim and BiasSim, 
have been provided in the Appendicies.  
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CHAPTER 2 
 

Development of Simulation Models 
 
 
 

Analysis of data obtained from actual construction projects corresponding to various 
quality characteristics like in-situ density, air-voids content, and asphalt content, have shown the 
data to be largely normally distributed (Hall and Williams, 2002). Although the target for a 
particular quality characteristic is generally a fixed value because of certain uncontrollable 
factors, it is almost never possible to produce exactly at that level.  

 
Variability observed in the field includes both production variability and measurement 

variability. Production variability includes all variability introduced due to field compaction 
variables, variability in the quality and physical characteristics of source materials, changes in 
the relative proportions of ingredients in the plant-produced asphalt mixture, changes in plant 
operational characteristics, changes in equipment operators, etc. Measurement variability is the 
variability which is introduced by measuring devices, test procedures, and operator techniques 
and human error. In addition to variability around the actual value, a measurement bias may be 
introduced as well. Bias refers to a consistent shift in data and can be introduced by device 
calibration errors, human error, or by the intentional biasing of measurements and/or recorded 
data.  Two common examples of device calibration bias relevant to the IDOT ERS program are:  
the use of an incorrect ignition oven calibration factor, or an improper angle calibration in a 
Superpave gyratory compactor. 

 
Estimating and Expressing Variability 
 
Setting bias aside for the moment, air voids, density, and asphalt content data collected in a 
typical ERS project can be assumed to have normally distributed fluctuations. This can be 
mathematically modeled as: 
 
 

 
 
Where, 
  ( )ACAVd //  represents density, or air voids, or asphalt content data 
 μ   represents mean  
 .prodσ   represents the production variability and 
 .measσ   represents the measurement variability 
 
It should be noted that contractor, agency, and third-party data are expected to follow this model. 
Third party, as referred to here, is an independent testing entity employed by the agency for 
resolving disputes in test measurement results. Since all the parties test the same material using 
split samples, the mean and production variability is the same for all parties. The difference 

( ) ..// measprodACAVd σσμ ++=
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observed in the test data from the contractor and the agency, for example, can be attributed to the 
measurement variability. Therefore, the model when applied to the contractor data would be: 
 
 
 
and when applied to the agency, would be: 
 
 
 
Since each measurement is performed on the spilt samples of the same material, the two values 
modeled above would form paired data. Subtracting the second from the first would eliminate 
the mean and production variability terms.  
 
 
 
 
Both terms on the right side of the equation come from a normal population. Therefore, their 
difference also would be normally distributed. Therefore,  
 
 
 
Where,  
 ( )CombN σμ,  represents a normally distributed population withμ  as mean and Combσ  as 
combined standard deviation where:  
 
 
 
 
 
Further, it can be assumed that the measurement variability for one type of test, like core density 
or asphalt content, would be fairly similar.  Then, field data could be pooled in order to obtain a 
typical value for measurement variability, which assumes:  
 
 
 
Therefore, 
 

2
Comb

meas
σσ =  

 
Simulation  
 

The motivation for using simulation to quantify specification risk can be summarized as 
follows: 

 

( ) ContractormeasprodContractorACAVd ,.// σσμ ++=

( ) AgencymeasprodAgencyACAVd ,.// σσμ ++=

( ) ( ) AgencymeasContractormeasAgencyContractor ACAVdACAVd ,,//// σσ −=−

2
,

2
,

0

AgencymeasContractormeasComb σσσ

μ

+=

=

( )CombAgencymeasContractormeas N σμσσ ,,, =−

measAgencymeasContractormeas σσσ == ,,
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• Risk in a construction specification arises from the fact that the process produces 
material with significantly varying properties, but the measurement of such 
fluctuations is relatively expensive and therefore a limited number of 
measurements can be taken.  The problem is further complicated since, unlike 
some other manufacturing processes, measurement variability and bias also exists 
due to the use of imperfect measuring devices. 

• In order to quantify payment risk in a specific end-result specification, one must 
first statistically describe how the aforementioned uncertainties in calculated pay 
would, in the long run, fluctuate from the ideal pay. 

• In order to statistically describe payment error, one must either use a closed-form 
analytical solution or a simulation tool.  Except for the simplest of specifications, 
closed-form solutions are not possible to formulate.  Simulation approaches 
generally require the computation and analysis of thousands of simulated 
production runs in order to arrive at model convergence.  With modern 
computing power, tens of thousands of construction scenarios can be simulated in 
tens of minutes.  Furthermore, the amount of simulation time required is not of 
critical concern, since the simulations are used in the creation or adjustment of a 
specification.  Once the specification is developed, implementation of the 
resulting ERS does not require the simulation to be run. 

• In order to simulate variability in asphalt pavements material properties, one 
must be able to sequentially simulate: 1) production and/or construction 
variability; 2) effects of random sampling of the variable material; 3) effects of 
measurement variability and/or bias, and finally; 4) the effects of tester bias on 
the final reported test measurement values. 

• In order to estimate risk in terms of effects on pay, the software must also 
simulate the formulas and decision tree logic contained in the construction 
specification. 

• Finally, a useful simulation tool would provide a convenient user interface, 
facilitating the rapid generation of input files, executing the analysis engine, and 
providing a statistically-oriented analysis of data (post-processing).  An advanced 
tool would also be able to create a database of results, and a post-processor for 
evaluating the database at a later time (to save computational time). 

 
One of the main challenges in the development of a risk simulation program is the ability 

to generate tens or hundreds of thousands of field measurements from thousands of simulated 
construction projects.  Based upon the assumption of normality discussed earlier, this relies on 
generating a normally distributed random number sequence with mean and standard deviation 
values or ranges to be studied as input by the user.  In Chapter 3 we report the extensively 
studied values estimated from observations of actual field project standard deviations in Illinois.   

 
The following sections describe the development of a series of ERS simulation models, 

developed in this project, of progressively increasing sophistication and increased user options 
and flexibility, including: 

 
- ILLISIM – The Original Simulation Model 
- PaySim – A Second-Generation Simulation Model 
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- BiasSim – A Simulation Tool for Analyzing Bias 
- Simulated Risk Analysis (SRA): The Latest Model 
 

The most current program, Simulated Risk Analysis (SRA), is a culmination of its predecessors 
and represents a highly functional, user-friendly ERS development and analysis tool.  
 

The reader who is interested in the historical development of ERS and simulation tools in 
Illinois should read on.  Readers interested in learning about the most recent specification and 
simulation tools used in Illinois should skip to the section entitled “Simulated Risk Analysis 
(SRA): The Latest Model.” 

 
 
ILLISIM: The Original Simulation Model 
 

The first computer program developed to analyze payment risks was called ILLISIM.  
Details are provided in Appendix A1 and in Buttlar and Hausman (2000) and Buttlar et al. 
(2001).  ILLISIM was used to model the Illinois ERS demonstration projects in 2000.   

 
ILLISIM randomly generates simulated values for the quality characteristics within given 

SUBLOTS and LOTS of material on a paving job.  It should be noted that capitalization is used 
for the terms ‘LOTS’ and ‘SUBLOTS’ in this report to be consistent with the nomenclature used 
in previous IDOT reports. The user has the ability to determine how ILLISIM evaluates the 
source(s) of variability depending on how easily individual sources of error can be identified.  If 
a given characteristic has separable, measurable sources of variability, the user can determine 
how each source independently affects the determination of quality.  Standard deviation is 
considered as an estimate of the variability of construction. Using density as an example, 
ILLISIM can consider three individual elements of variability (longitudinal, transverse, and 
measurement device).  However, if the user wishes to analyze a database of historical 
measurements from which individual sources of variability cannot be deduced, the total standard 
deviation from the data set can be used. 

 
ILLISIM uses the simulated measurements to compute a mean, standard deviation, 

percent within limits, and pay factor for each LOT of material considered. A minimum of 1000 
LOTS were typically simulated for each unique group of input parameters considered.  ILLISIM 
keeps track of a large number of runs, so that a statistical distribution of correct pay, versus 
actual pay for individual LOTS and complete JOBS, can be plotted.  

 
 The sampling schemes that can be simulated and analyzed using ILLISIM for as-
constructed pavement density can be described as follows: 

• Dual-Stratified Random Sampling Method — A length of pavement, or LOT, can be 
divided into equal SUBLOTS, which can be further subdivided by the number of transverse 
measurements desired per SUBLOT.  Sampling locations are based upon a conventional 
stratified random layout in the longitudinal direction.  In the transverse direction, samples are 
to be taken at the 2-, 4-, 6-, 8-, and 10-ft offsets, in random order.  Means and standard 
deviations are then computed using all measurements.     
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• Stratified-Average Sampling Method — This method utilizes an identical sampling layout 
as the dual-stratified method.  However, the mean and standard deviation are computed in a 
different manner.  First, an average density is obtained for each of the SUBLOTS within a 
LOT.  Then, a LOT average and standard deviations are computed using all the SUBLOT 
averages. 

   The average of properties measured within the LOT is the same between the two 
methods, but the stratified-average approach decreases the standard deviation and masks the 
variability that may occur across the mat. 

  The motivation for investigating the stratified-average method was to stabilize PWL-
predictions on a per-LOT basis in an attempt to minimize the possibility of frequent disputes, 
particularly when marginal quality levels arise. 

 
Inputs for ILLISIM 

The user supplies the following inputs to ILLISIM: 

(1) Mean value of as-produced or as-constructed quality characteristic (e.g. density, asphalt 
content, etc.) to be considered, or, more commonly, a range of such mean values 

(2) Standard deviation(s) of the quality characteristic(s) associated with production and 
construction  

(3) Standard deviation of the measurement device   
(4) Number of measurements 
(5) Sampling arrangement (e.g., completely random, dual-stratified random, stratified-

averaging method, etc., described in more detail in a later section) 
(6) Specification limits 
(7) Pay factor equation 
(8) Pay limits or "caps" (per lot and per job) 

 
ILLISIM Computations and Output 
 

First, simulated density measurements are used to obtain averages and standard 
deviations.  Next, PWL values and pay factors are determined.  A separate program called 
"Baseline" determines the "correct pay" for the input values given, based upon a very large 
number of simulations. Pay factor differences per LOT and per JOB are computed using 
ILLISIM, which are then compared to the correct pay value.  Pay factor differences arise since a 
discrete number of measurements will not typically lead to an exact measure of mean and 
standard deviation for any given LOT. 

Plots are generated to assess payment differences, or payment errors, that can be expected 
for a given set of inputs.  These results are generally shown across a range of mean desity, 
asphalt content (AC), or air voids to illustrate the increased risk of payment error for LOT 
averages that happen to be near the specification limits (e.g., when marginal quality levels arise).  
Maximum and minimum payment errors (risks) per LOT (based upon 1000 LOTS) and per JOB 
(100 JOBS) are given.  Also plotted are the 95% confidence intervals for pay differences relative 
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to mean pay, which allow the analyst to identify typical risk envelopes, independent of possible 
extreme values for maximum or minimum pay difference.  Finally, by defining the 95% 
confidence intervals on payment error as a "risk index," risk levels are also compared between 
different sampling methods, number of measurements, and such. 
  ILLISIM can be used to determine possible operating ranges where a given level of 
payment can be obtained, under various levels of process and device standard deviation.  
ILLISIM was used to assist IDOT in developing sampling schemes, adjusting specification limits 
and sample sizes for their asphalt ERS specification.  More details are provided in Appendix A1. 
 
 
PaySim: A Second-Generation Simulation Model 
 

While ILLISIM was useful in shaping early decisions in ERS specification development, 
one major drawback of the model was the amount of time required to run the software. The 
factors behind the long computations times were: 

 
(a) ILLISIM uses a reverse Monte Carlo Simulation algorithm. It relies on 

generating thousands of random numbers, processing them and repeating this 
procedure many, many times.   

(b) ILLISIM was encoded completely in Microsoft Excel and Visual Basic for 
Applications, which are not optimized for large numerical problems.  

 
To overcome these limitations, another simulation model called PaySim was developed. 

PaySim used an entirely new mathematical model to generate simulated data. This model does 
not require generation of thousands of normally distributed random numbers for each iteration, 
as was the case with ILLISIM. Instead, PaySim generates random numbers following a Chi-
squared distribution.  Ultimately, generated values are identical in nature to those generated by 
ILLISIM, but they are arrived at more efficiently.  Also, the coding of the main simulation 
engine was done in the C programming language.  These enhancements brought about 
appreciable improvement in the speed of the simulation process. In addition, PaySim was made 
to be more user-friendly and versatile. Details of the new mathematical model used in PaySim 
can be found in Appendix A2. 
 
Inputs for PaySim 
 

(1) Device variability 
(2) Production variability 
(3) Number of samples 
(4) Number of sublots 
(5) Analysis range for the quality characteristic being analyzed 
(6) Specification limits 
(7) Pay cap option (cap before averaging or after averaging) 
(8) Precision in simulation required (four levels available) 
(9) Confidence interval desired 
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Outputs from PaySim 
 

The simulation is fully automated to complete all the tasks and produce risk plots for the 
quality characteristic being analyzed and in the range as defined in the inputs. The list of inputs 
also gives an idea of the versatility of the simulation, because practically any combination of 
input parameters can be chosen and analyzed. The output is in the form of risk plots showing the 
risk to the agency in terms of pay factor.  
 
BiasSim: A Simulation Tool for Analyzing Bias 
  

Besides variability, measurements of quality characteristics are prone to bias, or 
consistent shift in the measurements. ILLISIM and PaySim primarily dealt with issues related to 
production and measurement variability, number of specimens, sampling schemes, and tolerance 
limits.  However, Buttlar et al. (2001) demonstrated that bias can significant effect payment risk. 
Furthermore, in order to accurately estimate production and measurement from field data, 
especially when data are to be pooled between multiple projects, bias must be first subtracted 
from the data to avoid arriving at highly inflated estimates of variability.  BiasSim primarily 
focuses on the effects that such bias can have on the measurements and therefore on the pay 
factors and specification risk (Aurilio et al. 2002).  Details about the BiasSim program can be 
found in Appendix A3.  A brief summary follows. 

 
Determining Bias Magnitude 
 

Table 2.1 provides an example of the calculation of bias from field data.  In this example, 
10 split samples (adjacent cores, longitudinally aligned on the pavement and closely spaced) 
were taken to determine the as-constructed density of a pavement.  The difference in the 
contractor and agency test results can  be used to estimate the magnitude of bias. It is assumed 
that split samples have identical properties.  Since a large number of samples have been obtained 
during IDOT ERS demonstration projects, reliable estimates of measurement bias have been 
obtained.  More estimates of bias are given in Appendix A3 and have been reported in Buttlar et 
al., 2002.   
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Table 2.1: Example of bias calculation from in-place density data 
 

Job Contractor Agency Difference Mean of Diff 
(Bias) 

92.60 91.81 0.79 
93.67 93.84 -0.17 
93.92 93.92 0.00 
92.77 93.39 -0.62 
93.80 93.88 -0.08 
93.96 94.21 -0.25 
92.85 91.81 1.04 
95.45 95.12 0.33 
94.17 94.46 -0.29 

District 8 

95.04 94.67 0.37 

0.11 

 
 
 
Inputs for BiasSim 
 

Microsoft Excel with visual basic programming is used as the interface for the user to enter 
the following inputs:  
 

(1) Quality Characteristic to be analyzed 
(2) Production variability 
(3) Device variability for contractor (multiple inputs possible) 
(4) Device variability for agency (multiple inputs possible) 
(5) Sample size per job 
(6) Number of cases to be analyzed (for batch processing) 
(7) Range of quality characteristic values for analysis 
(8) Specification limits  
(9) Comparison tolerances 
(10) Precision desired in simulation 
(11) Confidence interval 
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Output from BiasSim 
 
 The outputs from the simulation are plots displaying risk in pay factor (%PF) for a given 
set of parameters and in the range of analysis desired.  In the case of batch processing of 
simulation runs, all the cases are first computed, stored to a database, and then plotted. The plots 
also provide the lower limit and upper limit of confidence interval respectively.  The level of 
significance for the confidence limits can be chosen by the user.  In general, the existence of bias 
in measurements creates a skew in the risk plots, as presented in the Appendix (and later, in 
Chapter 3).  Obviously, for the case of a contractor result biasing towards the middle of the 
specification limits, a positive risk (agency risk) exists.   
 

The BiasSim program can be used to set comparison limits for quality assurance, number 
of QA samples, and specification decision tree logic for agency, contract, and third party test 
comparisons.  Because of test variability, bias is not estimated accurately in QA comparison 
limits.  This inaccuracy has been studied both in terms of number of invalid comparisons for a 
given job size over long runs, and in terms of its effect on payment risk for both parties. Invalid 
comparisons are the ones which are incorrectly assessed by the QA portion of the specification.  
 
 
Simulated Risk Analysis (SRA): The Latest Model 
 

ILLISIM, PaySim and BiasSim have been found to be useful tools for the analysis of 
risks in ERS systems in Illinois.  Ultimately, it was necessary to combine the capabilities of these 
simulation tools into a single, combined risk analysis program because of the concurrent 
presence of production variability, measurement variability and bias. This has now been 
accomplished, in the SRA program. 
 
How Does SRA Work? 
 

In terms of the simulation engine, input, and output, SRA is truly a combined form of 
ILLISIM and BiasSim with additional features added for enhanced analysis capabilities and 
flexibility. Unlike the previous programs, SRA generates measurements to simulate the third-
party tests, when needed. Third-party tests are used when the contractor and agency 
measurements do not match and the contractor chooses the option of having a third party resolve 
the dispute. Therefore, the full decision tree used in the present IDOT ERS is implemented.  

 
SRA generates three sets of simulated data, with N measurement values in each set.  

Detailed flow charts describing the algorithms used in SRA are provided in Figures 2.1 through 
2.3. The three sets correspond to the contractor, agency (District), and third-party measurements. 
N is the sample size for the job. The contractor and district measurements are then compared 
according to the DOT specifications. First, one out of every five measurements from the 
contractor and the district, corresponding to one split sample, is randomly selected and 
compared. If the two measurements are found to be within the tolerance limits specified for N=1 
comparison, the contractor measurements are accepted for calculating payment. If the N=1 
comparison fails, the contractor has the choice of accepting the district measurements or 
invoking the N=3 comparison with the third party.  
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The simulation engine has logic enforcing the rule that if the district measurements are 

closer to the middle of the acceptance limits, the contractor would choose to defer to the District 
measurements. This would normally increase the percent within limits, since the benefit of 
moving towards the middle of the specification range would normally outweigh the negative 
impact of an increased standard deviation.  If the contractor chooses to invoke third-party testing, 
then three split sample measurements, chosen according to the comparison specifications, are 
averaged and compared. The tolerance limit for this N=3 comparison is generally stricter than 
that used in the N=1 comparison. If the average of the three measurements is within this 
tolerance limit the contractor measurements are accepted for pay calculation.  Otherwise the 
third-party measurements are accepted. Thus a separate list of accepted measurements is 
generated. These measurements are then used to determine the percent within limits (PWL) 
according to the specifications. PWL is used to calculate pay factor for the contractor. The pay 
factor equation from the 2004 and 2005 IDOT ERS specification is taken by default, as shown 
below. 
 

PF = 0.53 + 0.5 * PWL 
 

Where,    
PF = Pay Factor (%) 

  PWL = Percent Within Limits 
 

Depending on the accuracy desired, a certain number (generally between 1,000 and 
10,000) of such sets of data are generated and PF calculated. The mean of all pay factors is then 
calculated and confidence intervals (90 percent by default) on the pay are determined. This set of 
pay factors is generally not normally distributed, because of the nonlinear nature of the 
acceptance logic, and the effects of maximum pay and pay caps. Therefore, mean and standard 
deviation of pay factor results should not be used to determine the confidence limits.  Rather, a 
numerical assessment of the cutoff points, which provide the prescribed number of values inside 
the confidence intervals, is used. These calculations are performed at a particular mean value and 
repeated across the range of mean values specified by the user at a user-specified interval. Please 
refer to the brief user’s guide in the next section for guidelines for specifying the interval. The 
output is in the form of plots for mean risk, ideal pay, and actual pay, along with confidence 
interval limits as described earlier.  

 
As previously mentioned, the contractor, agency, and/or third party can introduce bias. 

While there is no perfect method available to estimate individual bias values, paired data from 
split samples from any two of the three parties can be used to investigate the possibility of bias.  
While the possibility of bias canceling (bias from both parties, in same direction) or bias 
compounding (bias from both parties, in opposite directions) exists, and would complicate bias 
analysis, it is expected that significant bias would most often occur in the data of a single party.  
While all of the aforementioned cases can be modeled without difficulty, up to this point the 
SRA program has only been used to study the effects of bias introduced by a single party. 
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Key: Meas.–Measurement; Prod. – Production; Std. dev. – Standard Deviation; Contr – Contractor; PF – Pay Factor; 
        BMPR – Bureau of Materials and Physical Research (same as Third Party) 

 
Figure 2.1: Risk simulation and analysis procedure



 22

 

Quality Level Analysis

Choose 5 consecutive 
measurements i to i+4

Is 
|meascont(i+1) 

–
measdist(i+1)|

< N=1 Tol. 

Choose meascont(i to i+4) 
for PF

No

Yes

Is 
|meascont(i+1) 
– midspec| > 
|measdist(i+1)

-midspec| 

No

Contractor chooses 
measdist(I to i+4) for PF

Yes

Is |mean  
(meascont(i to i+2) –

measTh.Party(i to 
i+2))| < N=3 Tol. 

No

Are all 
measurements 

covered

Choose meascont(i to i+4) 
for PF

Choose measTh.Party(i to 
i+4) for PF

No

Pass measurements for 
PWL & PF Calculation

Yes

Yes

Quality Level Analysis

Choose 5 consecutive 
measurements i to i+4

Is 
|meascont(i+1) 

–
measdist(i+1)|

< N=1 Tol. 

Choose meascont(i to i+4) 
for PF

No

Yes

Is 
|meascont(i+1) 
– midspec| > 
|measdist(i+1)

-midspec| 

No

Contractor chooses 
measdist(I to i+4) for PF

Yes

Is |mean  
(meascont(i to i+2) –

measTh.Party(i to 
i+2))| < N=3 Tol. 

No

Are all 
measurements 

covered

Choose meascont(i to i+4) 
for PF

Choose measTh.Party(i to 
i+4) for PF

No

Pass measurements for 
PWL & PF Calculation

Yes

Yes

 
Key: meas. – Measurement; midspec – middle of specification limits; PF – Pay Factor; 

 
Figure 2.2: Quality assurance checks performed by SRA 
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Figure. 2.3: Determination of PWL and PF & Determination of CI and development of Risk 
Plots 
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SRA presents analysis results for two main classes of problems: 

(1) Analysis with original simulated data: In this case specification limits are applied on the 
original simulated data. Then percent within limits (PWL) and pay factors (PF) are 
calculated. 

(2) Analysis with data from which relative bias has been removed: Although individual 
absolute values of bias are not known, it is possible to remove any relative bias detected. 
An important point is that tolerance specifications are applied on the difference in 
measurement values of two parties rather than their individual values. Therefore, it is 
possible that before applying the tolerance specifications, relative bias is subtracted from 
the differences. Then, ideally the differences should represent measurement variability 
only. This procedure, if applied, would tend to reduce payment risk, if the data were 
appreciably biased, as compared to an analysis where bias was left in the data and used to 
arrive at a higher variability estimate.  

 
Table 2.2 presents an example to illustrate the calculation and removal of relative bias. It should 
be noted that a very small number of measurements are shown in this example. In reality each 
party would have 100 to 250 or more measurements in a typical ERS project in Illinois.  
 

 
Table 2.2: Example calculation for relative bias calculation and removal 

Job Contractor Agency Difference Mean of Diff 
(Bias) 

Normalized 
Difference 

92.60 91.81 0.79 0.68 
93.67 93.84 -0.17 -0.28 
93.92 93.92 0.00 -0.11 
92.77 93.39 -0.62 -0.73 
93.80 93.88 -0.08 -0.19 
93.96 94.21 -0.25 -0.36 
92.85 91.81 1.04 0.93 
95.45 95.12 0.33 0.22 
94.17 94.46 -0.29 -0.40 

District 8 

95.04 94.67 0.37 

0.11 

0.26 
Mean 93.82 93.71 0.11  0.00 

 
 
 
The columns “Contractor” and “Agency” represent density measurements in %Gmm 
corresponding to the named party. Each row shows the values for split sample measurements. 
Differences between the paired values are then calculated, and the mean of the differences 
provides an estimate of the relative bias. The last column shows the differences when relative 
bias is removed from the differences.  
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Brief Users’ Guide for SRA 
 

The main simulation engine for SRA has been developed in the program Matlab. 
However, Microsoft Excel with Visual Basic programming is used as the interface. The 
simulation is run in two stages, as follows. 

 
(1) Microsoft Excel is used as the interface (SRA.xls). Figure 2.4 illustrates a 

portion of the user interface. The following points may be helpful in using the 
SRA Excel interface. 
• Working Directory: The first task is to specify the working directory. A 

backslash (“\”) should not be used at the end of the directory name. This is 
the directory where the input and output files will be stored by the 
program. This can be different from where SRA.xls is actually stored.  

• Output File Name: The name of the output file is then specified, without 
a file extension. The program automatically saves results to an Excel file 
with a .csv file extension. 

• Case: Since the SRA program is set up for batch processing up to 30 runs, 
the user must provide analysis parameters for a corresponding number of 
rows, as explained below.  For convenience, any analysis case can be 
skipped by un-checking the case (check box is located one row above the 
Case number).    

• Precision Required: Even with recent improvements to algorithms and 
the computing environment, the SRA simulation places significant 
demands on processing time. However, if one only desired to observe 
general trends for quick reference it is possible to choose a lower precision 
level in order to reduce analysis time. There are four standard levels of 
precision available, “High”, “Medium”, “Low” and “Crude”. There are 
default numbers of runs that are sent to the simulation engine depending 
on the precision input by the user. But the user can also change the 
number of runs corresponding to these levels of precision. Table 2.3 gives 
the default number of runs associated with the precision levels. These 
defaults can be changed by editing cells “F39” to “F42” in the Excel 
Worksheet entitled “Home.” 

 
       Table 2.3: Number of runs associated with precision levels in SRA 

Desired Precision No. of Runs 
Crude 50
Low 1000

Medium 5000
High 10000  

 
• Confidence Level: Four standard confidence limits can be chosen from 

the drop-down list. Custom confidence limits can be typed directly into 
cell “F45.” The new entry will automatically appear in the drop-down list, 
which can then be selected. Each case can have a different confidence 
level associated with it. 
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• Measurement Variability (Contractor, Agency and Third Party): 
Measurement variability is also sometimes referred to as device 
variability, and is a user-defined variable.  Estimates of measurement 
variability can be computed from split sample test data, as described 
earlier in this report. This parameter has a strong influence on risk.  

• Production Variability: This refers to the variability of selected physical 
properties of the as-produced mixture or as-constructed pavement, 
independent of measurement variability. As noted in the earlier analysis, 
this does appreciably affect payment risks. Although it is generally not 
possible to obtain direct measure of this parameter, it can be estimated by 
mathematically extracting the measurement variability from the total 
variability, using the equations provided earlier in this chapter.  

• Sample Size: This is the number of specimens to be tested in the project 
by the contractor. 

• Bias (Contractor, Agency and Third Party): These are the estimates of 
individual bias in the measurements of the contractor, agency and the third 
party. 

• Limits (Upper and Lower): These are the upper and lower specification 
limits for acceptance of the product for the quality characteristic being 
analyzed.  

• Comparison Limits (Tolerance Limits): Tolerance limits define the 
maximum acceptable difference in test measurements between the 
comparing parties (e.g. Contractor and Agency). If the two readings are 
considered different this can be resolved by either the contractor accepting 
the agency readings or by using third-party measurements (in IDOT 
specifications). Also, according to the current IDOT specifications one out 
of five samples are compared first (N=1 comparison) and if the difference 
is outside the allowable limit, the average based on three samples are 
compared (N=3 comparison), this time using the tighter tolerance limits.  

• Number of Plotting Points: This is the minimum number of plotting 
points desired in the risk plot to be generated by the simulation. The 
simulation uses adaptive plotting to put in more points if there are abrupt 
changes in the plot. 

• Increase in Point Density for Peaks: This is the maximum increase in 
plotting density for adaptive plotting. More density would mean more 
processing time. If three is input in this field there will be at maximum 
three times as many points in the region of the peak as there are in regions 
of the plot where the curve is flat. It has been observed that having a 
density higher than 7 does not lead to a further gain in accuracy. 

• Lowest and Highest Points to be Plotted: This defines the range of the 
quality characteristic chosen for analysis. All the risk would be calculated 
in this range. Practically, values far from the specification limits do not 
have risks, because everything would be rejectable quality. So, a good 
range could be from lower specification limit minus 4 times the standard 
deviation to the upper specification limit plus 4 standard deviations. This 
range, however, should be widened by the amount of bias on both sides. 
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There is no harm in taking a wider range except for the fact that the 
density of plotting points would be less or the number of points would 
need to be increased, leading to higher processing time.  

• Remove Bias and Analyze: SRA simulates the field measurements with 
bias, if provided by the user. The user can opt for a second analysis to be 
done after removal of relative bias in addition to the analysis with biased 
data by keying in 1 (one) in this field. If the field has 0 (zero), SRA would 
not produce risk analysis results for the case when relative bias is 
removed.  

• Default: If the user does not have a preference, the Default button can be 
used to restore typical default values.  

• Auto Fill: This button can be used to copy the parameter values from the 
previous case. This is quite handy when the user changes only a few 
values from one case to the next.  

• All Clear: This button can be used to clear all the parameter values before 
entering new values.  

• Simulate: After all the values have been entered and precision levels, 
confidence intervals and cases have been chosen, the user can use this 
button to generate an input file named “input.txt”. This input file is placed 
in the working directory, which can be edited by the user with a text 
editor.  However, the layout of the file should not be altered. Multiple 
spaces are considered as single space by the simulation program. The 
sequential position of the entries in rows and columns are important, but 
not the spacing (free form input file). After this button is pressed, the 
program will ask if input.txt should be overwritten, etc. 

 
(2) The main simulation engine was coded in Matlab. The user should set the 

working directory for SRA as the current directory in Matlab. It is assumed 
that the input file has been prepared in a previous step, as described above. 
Now the user simply clicks on the “Simulate” button.  While the program will 
stop only after all the cases have been run, the command window will 
constantly show the case number being simulated and the percentage progress 
for that run. The percentage of progress is only for that case run and not for 
the entire batch run.  
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Figure 2.4: Snapshot from Excel interface for SRA 

 
(3) When the run is over, a file named “PF.csv” will be generated and placed in 

the working directory. The user can open this file in MS Excel. The output file 
“PF.csv” has the following three parts: 

 
    (a) The values of all the input parameters used in the simulation. 
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(b) The Main output of risk estimates. This section has output in 26 

columns. The first 14 columns correspond to the analysis using 
data with relative bias, and the next 14 columns correspond to 
the data from which relative bias has been removed. This 
second set of output columns would not be generated if the 
user chooses not to analyze the data after removal of relative 
bias. In each set of output the first four columns are mean 
quality characteristic values and corresponding mean, lower 
confidence limit and upper confidence limit for payment risk 
determined. The 5th and 10th columns are the same as the first 
column and have been repeated to facilitate plot generation. 
The next four columns (6th to 9th columns) give the percentage 
of cases when: the N=1 comparison passes; the contractor 
accepts the district results; the N=3 comparison passes, and; 
the N=3 comparison fails, respectively.  The 11th to 14th  
columns give the ideal pay, mean actual pay and upper and 
lower confidence limits on actual pay respectively. These two 
sets of values would give an idea of how much risk can be 
reduced if the relative bias is removed from the data before 
actually applying the specifications for pay factor calculations.  

 
      Outputs (a) and (b) are repeated for each case presented for 

analysis by the user.  
      

(c) The third part of the output comes at the end of the PF.csv file. 
This gives the summary results from all the runs. This has two 
sets of results. The first set corresponds to the data simulated 
with bias. The second set corresponds to the data from which 
relative bias has been removed. The summary results in each 
set include maximum positive risk, maximum negative risk and 
Narrow Risk Band. The Narrow Risk Band concept will be 
explained in the next chapter.  
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CHAPTER 3 
 

Analysis of IDOT End Result Specifications 
 
 

This chapter presents detailed results from risk analyses performed using the SRA 
program on data collected by IDOT on ERS projects, primarily between 2000 and 2004.   SRA 
has functionality at two distinct levels: 1) as an analysis tool at the standard user’s level, and 2) 
as a research tool for more in-depth analysis and development of end result specifications. This 
chapter presents results of risk analyses which describe and explore: 

• Typical results and plots from SRA and recommendations for interpretation of 
results; 

• Estimated payment risks associated with IDOT’s 2004 ERS specification; 
• Capped versus uncapped  pay factor equations, and; 
• Two possible strategies for reducing contractor in-situ density testing without 

significantly increasing risk. 
 
 
Use of SRA at the Standard User’s Level 
 
 

The following sensitivity analysis was carried out to determine how production variability, 
measurement variability, bias, and sample size affect risk. The analysis was extended to 
determine how these factors affect each other’s effect on risk, i.e., interaction effects.  
 

Sensitivity Analysis 
 

The factors that were included in this analysis are 
 
(1) Production Variability 
(2) Measurement/ Device Variability 
(3) Bias 
(4) N (Number of samples in the job) 

 
A set of simulations were run with the values of the factors given in Table 3.1. Two 

levels were chosen for each factor. Rather extreme values were intentionally chosen to 
clearly demonstrate the direction in which risk changes with the change in that factor. Also, 
the factors have been chosen in such a way that with further analysis the interaction of 
effect of one factor with another factor, or factors, can be determined using experimental 
design principles.  
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Table 3.1: Parameter values used in the sensitivity analysis with SRA 
 

Bias Run 
Number σprod σmeas Contractor Agency Third 

Party 
n 

1 0.3 0.2 0 0 0 15 
2 0.8 0.2 0 0 0 15 
3 0.3 0.5 0 0 0 15 
4 0.8 0.5 0 0 0 15 
5 0.3 0.2 0.4 -0.4 -0.4 15 
6 0.8 0.2 0.4 -0.4 -0.4 15 
7 0.3 0.5 0.4 -0.4 -0.4 15 
8 0.8 0.5 0.4 -0.4 -0.4 15 
9 0.3 0.2 0 0 0 40 
10 0.8 0.2 0 0 0 40 
11 0.3 0.5 0 0 0 40 
12 0.8 0.5 0 0 0 40 
13 0.3 0.2 0.4 -0.4 -0.4 40 
14 0.8 0.2 0.4 -0.4 -0.4 40 
15 0.3 0.5 0.4 -0.4 -0.4 40 
16 0.8 0.5 0.4 -0.4 -0.4 40 

 
 

Figures 3.1-3.4 show the output from these runs. These plots give the mean 
payment risk and confidence interval. The plots have been arranged in groups of four. 
Each group of plots has only two parameters varying and the other two parameters are 
held constant. Between left and right plots in each set production variability has been 
varied, and likewise between the top and bottom plots measurement variability has been 
varied. Bias has been increased in sets of plots in Figures 3.2 and 3.4 as compared to 
those in Figures 3.1 and 3.3 respectively. Between the first two sets of plots and last 
two sets, the number of measurements used per job has been increased from 15 to 40.   

 
Since the SRA program provides new results that have been previously 

unavailable to the pavement engineering community, the analysis of risk plots deserves 
introductory comments and suggestions.  So before a detailed discussion of the 
aforementioned simulation runs are presented, below are some suggestions and 
concepts to bear in mind when interpreting risk plots: 

 
• The results have been plotted along a range of values for the quality 

characteristics, i.e., percent density (% Gmm).  The way to interpret the results is 
to think of each discrete location along the plot as an ERS job which ended with 
a mean value for that quality characteristic of that particular value.  For that 
given mean of production, along with the other parameters used in the 
simulation run, one can then see the expected average pay (over the long run, if 
one could evaluate similar jobs with a similar mean) and the confidence 
interval, which helps describe the range of variability that can be expected from 
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job-to-job within those particular characteristics.  It is easy to mistakenly get an 
overly pessimistic view of ERS risk when analyzing risk plots for individual 
factors.  In reality, several quality characteristics are included in the pay factor 
equation (three currently in Illinois), and usually most of these quality 
characteristics will be produced within the Narrow Risk Band (see the following 
section), thereby reducing the overall payment risk for the job. 

 
• Measurement variability tends to create large “vertical spikes” in the risk plot in 

the vicinity of the USL and LSL (cf. Figure 3.5).  In general, these spikes are 
symmetrical with respect to the middle of the specification limit.  So focusing 
attention on the LSL, for instance, as the average production decreases from the 
middle of the specification range towards the LSL, the contractor risk begins to 
increase very suddenly (risk becomes more negative due to increased chance of 
under pay).  The risk reaches a maximum absolute value (local minimum on the 
plot), then recovers and crosses the zero point at the LSL (except when bias is 
present) and reverses in magnitude towards positive (agency risk) as the average 
production moves below the LSL.   A simple way to think about this is that 
measurement variability creates pure error, which greatly increases risk when 
the average production is near the specification limits.  This is because the 
measurement variability artificially inflates the overall measured standard 
deviation (as compared to actual production variability), which puts the 
contractor in more jeopardy when production is just within the specification 
limits, and puts the agency in more jeopardy when production is just outside the 
specification limits.  The normal distribution curve has the most area in the 
middle of the curve, and hence, measurement variability has the largest impact 
on risk when the normal distribution is nearly centered on the specification 
limit.  For example, the normal curve may be slightly to the left of the LSL due 
to random measurement fluctuations when it should have been slightly to the 
right, creating a relatively large pay factor error or risk. 

• The level of production variability can affect the importance of measurement 
variability.  In general, it is best if measurement variability is small as compared 
with production variability.  When this occurs, the effect of measurement 
variability on risk near the specification limits is greatly minimized. 

• Simple bias creates non-symmetrical risk plots and increases overall risk.  The 
non-symmetries result from the fact that a simple, one-way bias (such as 
calibration error) will tend to decrease the risk for a given party on one side of 
the risk plot (pushing values towards the target), but tend to increase that party’s 
risk on the other side of the plot (pushing values away from the target).  Similar 
to measurement variability, bias is not an indicator of the real pavement’s 
quality, so it leads to appreciable increase in risk. 

• It should be noted that a second type of bias, not directly addressed in this study, 
can exist.  This would be the case where a party intentionally biases all 
measurements towards the target (middle of spec limits).  In this case, the risk 
for the other party (non-biasing party) would be increased at both specification 
limits.  QA comparisons and QA policies would help minimize this problem. 
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Returning to the results of the simulation study, as presented in Figures 3.1-3.5, some of the 
salient points observed from the simulation results are as follows: 
 

• As production variability is increased the risk becomes more distributed over 
the range. In other words a “Narrow Risk Band,” or the extent of production 
averages in which the confidence interval of risk is very small or zero, is 
reduced with increasing production variability. For lower production variability 
the risk plot has sharper peaks near the acceptance limits and confidence limits 
are generally narrower in the middle.  

• As measurement variability is increased confidence limits on payment risk, in 
general, become wider. But this widening of the confidence limits also depends 
on the production variability present. The increase is very significant when 
production variability is low and nearly insignificant when production 
variability is very high.  

• Increase in measurement variability has a more profound effect on the mean risk 
than the confidence interval. If, in a particular case with low measurement 
variability the mean risk is close to zero, there is a significant increase in the 
mean risk with increased measurement variability. This signifies that the 
probability of contractor underpayment (in the case of negative mean risk) or 
agency overpayment to the contractor (in case of positive mean risk) is very 
high.  

• Increase in bias induces significant increase in risk. This can change the 
magnitude as well as sign of risks involved, as compared to the data without 
bias. Interestingly the effect of bias is more significant when production 
variability is low than the case when production variability is high. One 
explanation of this phenomenon could be that increase in production variability 
induces variability in the data used for calculating base line pay as well. 
Therefore, the larger differences due to bias get overshadowed by the large 
production variability, leading to a smaller difference between ideal and actual 
pay.  

• An increase in the number of measurements in the job always narrows the 
confidence interval width in the risk plot significantly. The magnitude of 
reduction in risk is higher when the data have higher production and 
measurement variability.  
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Figure 3.1: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits) 
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Figure 3.2: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits) 
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Fig 3.3: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits) 



 37

 σprod = 0.30         σmeas = 0.20          N = 40          Bias = High σprod = 0.80         σmeas = 0.20          N = 40          Bias = High 

-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30

2 3 4 5 6

Upper Confidence Limit

Lower Confidence Limit

Mean Risk

LSL LSL
-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30

2 3 4 5 6

σprod = 0.30         σmeas = 0.50          N = 40          Bias = High σprod = 0.80         σmeas = 0.50          N = 40          Bias = High 

R
is

k 
(%

 B
id

 A
m

ou
nt

) 

-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30

2 3 4 5 6

 

-30
-25
-20
-15
-10

-5
0
5

10
15
20
25
30

2 3 4 5 6

Air Voids (%) 
Fig 3.4: Sensitivity analysis simulation run plots from SRA (LSL, USL: Lower and Upper Specification Limits) 
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      The previous section demonstrated the typical risks involved in ERS, as predicted 
by SRA, and how typical ERS parameters like sample size and bias affect this risk.   It is 
desirable to use SRA in the design and adjustment of an ERS such that targeted risk levels 
are achieved while minimizing testing burden and limiting the potential for disputes and the 
need for third-party testing. To accomplish this, one approach would be to repeatedly run 
the simulation program and manually determine the parameter values giving lower risk. 
This would, however, require appreciable expertise on the part of the user. Therefore, it is 
desirable to have a computational tool which does this for the user. This in turn necessitates 
that the SRA results be further analyzed to produce objective quantities rather than just 
trends. Three ways were identified in which SRA risk results can be quantitatively 
characterized. They are: 

 
(1)Maximum risk: This represents the peaks in the plots and gives the maximum 

amount of risk for the given set of parameter values within specification 
limits. It is notable that it would be more appropriate to use the peaks of 
confidence intervals rather than those of the mean risks. This is because there 
is a 50% possibility that risk would be greater than mean risk. Maximum 
positive risk (MPR) would represent the risk for the agency and maximum 
negative risk (MNR) would represent the risk for the contractor. 

 
Key: LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 

 
Figure 3.5a: Concept of Maximum Positive and Negative Risk 

 
(2) Narrow risk band (NRB): It is defined as the range of the quality characteristic 

(i.e. voids, AC or Density) within specification limits where width of 90% 
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confidence interval for risk is less than 5%. Figure 3.5 illustrates this 
characteristic. 

 
 

 
Key: LCL: Lower Confidence Limit; UCL: Upper Confidence Limit 

 
Figure 3.5b: Concept of Narrow Risk Band (NRB) and Area of Risk Envelope 

 
(3) Composite Risk Index (CRI): Visual observation of the risk plot provides vital 

information about its characteristics. But comparing different risk plots is 
somewhat subjective. A Composite Risk Index (CRI) was developed which 
can characterize a full risk plot and could be used for objectively comparing 
risk plots from different scenarios of variabilities as well as different types of 
specifications. CRI is calculated in two steps. In the first step 200 equidistant 
quality characteristic values are identified within the specification limits. At 
each of these points 100 representative evaluations of risk (as done in a Monte 
Carlo based simulation) are picked and their moment is taken about the zero 
risk line. Taking moments ensures that higher risk values contribute more to 
overall risk. A reasonable amount of risk at any point is somewhat acceptable. 
But higher risks certainly throw a red flag because that may lead to more 
disputes and strained relationships between the contractor and the agency. 
Finally all the moment values are averaged. This represents the point risk 
index. In the second step all the point risk indices are averaged across the 
specification limit window, giving higher weights to those towards the middle 
of the window. Varying weights penalize a specification or scenario in which 
higher payment risks are expected, even when the contractor is quite close to 
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the target or the middle of the window. The weights were determined by 
extensive analysis with the goal of keeping CRI sensitive to spatial location of 
the data while balancing its effect on CRI because of other factors.  

 
The set of 16 experimental runs were repeated 4 times to obtain replicate values for 

calculation of standard errors. Table 3.2 gives the mean values of the abovementioned 
parameters for each experiment. The change that is observed in the risk level as a result of 
the parameter value going from the lower to upper level can be quantified using the 
principles of experimental design. This change is technically termed as “effect of 
parameter.” Table 3.3 shows the calculated effects for each of the parameters. Effects 
related to a single parameter (i.e., X1, X2, etc.) are referred to as a main effect of that 
parameter. When two or more parameters are involved then it is referred to as an 
interaction effect.  

 
A negative effect for maximum positive risk means that the maximum risk for the 

agency will decrease with an increase in that parameter value. Conversely, a negative effect 
for maximum negative risk would mean that maximum risk for the contractor would 
increase. Some of the conclusions that can be derived from the table of effects are: 
 
• Effect of increase in production variability on the maximum positive risk is negative, 

and on the maximum negative risk the effect is positive. Therefore, the increase in 
production variability actually brings the risk down for the agency as well as the 
contractor. Because of higher variability in production the contractor will rightfully 
receive lower payment. So, although the payment will be lower it is justified and hence 
the risk of incorrect payment is low. Another way to look at it would be that increased 
production variability tends to desensitize the effect of measurement variability, as 
mentioned previously. 

• The extent of the narrow risk band decreases with increase in production variability.  
Recall that the narrow risk band represents the area where maximum pay is deserved 
(100 PWL is achieved) and where the probability of an estimated PWL below 100 is 
negligible.  In other words, if production variability is high, then even for production 
averaging in the middle of the specification limits there is possibility of payment risk.  
When the production variability is low, then maximum pay will almost certainly be 
awarded when it is deserved.  

• Looking at the main effect of measurement variability on maximum positive risk may 
indicate that MPR goes down as measurement variability becomes higher. But there is 
another factor that must be considered here. Bias has the most significant effect on 
MPR and bias has significant negative interaction with effect of measurement 
variability. Also, the main effect of bias is positive and much greater in magnitude than 
that of measurement variability. Therefore, the interaction effect coming from bias can 
overshadow the effect of measurement variability on MPR.  When plots with zero (or 
low) bias are observed it is clear that an increase in measurement variability increases 
MPR, especially when production variability is low. The same logic holds for MNR as 
well.  

• Bias has significantly higher effect on the maximum positive and negative risk, both of 
which increase with increase in bias. 
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• Increase in bias also reduces the width of narrow risk band. However the effect is 
relatively much smaller than that caused by increases in measurement variability or 
production variability. 

• Increase in number of samples in the job, N, appreciably narrows the 90% confidence 
interval. This would also translate into a slight increase in NRB if the envelope is near 
the zero risk line.  The decrease in the magnitude of risk generally decreases with the 
square root of N, as intuitively expected. 

• The interaction of production and measurement variability does not have appreciable 
effect on maximum positive or negative risk.  

• Production variability and bias have an appreciable effect on maximum positive and 
negative risk, but a much smaller effect on the extent of the narrow risk band. 

 
During the replicate runs it was observed that the risk values, as well as all the risk plot 

characteristic values, had absolutely no variation up to the second decimal place. This 
provided confidence that the results obtained were very repeatable, i.e., effect estimates are 
very precise and would not vary from one run to another.  This is not a trivial matter, since 
simulation programs can sometimes be affected by imperfections in random number 
generation and the number of simulations required for a stable result will vary from 
problem to problem. 
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Table 3.2: Mean values of risk characteristics for data with bias 

 

Contractor District Thparty
1 0.3 0.2 0 0 0 15 1.38 -9.02 8.84 2.18 12.88
2 0.8 0.2 0 0 0 15 0.00 -8.99 8.88 6.10 21.73
3 0.3 0.5 0 0 0 15 0.50 -12.48 9.27 5.72 17.99
4 0.8 0.5 0 0 0 15 0.00 -9.40 8.70 7.33 22.63
5 0.3 0.2 0.4 -0.4 -0.4 15 1.23 -27.60 23.25 9.88 16.66
6 0.8 0.2 0.4 -0.4 -0.4 15 0.00 -17.32 17.12 10.15 22.60
7 0.3 0.5 0.4 -0.4 -0.4 15 0.00 -22.60 18.54 9.72 25.65
8 0.8 0.5 0.4 -0.4 -0.4 15 0.00 -14.69 14.38 9.56 26.14
9 0.3 0.2 0 0 0 40 1.64 -5.24 5.60 1.30 7.88
10 0.8 0.2 0 0 0 40 0.00 -5.33 5.33 3.90 13.22
11 0.3 0.5 0 0 0 40 1.01 -9.41 5.96 4.79 11.03
12 0.8 0.5 0 0 0 40 0.00 -6.40 5.44 5.16 13.74
13 0.3 0.2 0.4 -0.4 -0.4 40 1.46 -24.18 21.55 9.50 10.69
14 0.8 0.2 0.4 -0.4 -0.4 40 0.00 -13.78 13.70 8.98 13.93
15 0.3 0.5 0.4 -0.4 -0.4 40 0.58 -17.41 14.92 8.33 15.91
16 0.8 0.5 0.4 -0.4 -0.4 40 0.00 -10.76 10.82 7.57 15.97

Run 
Number

Bias n NRB Max Neg 
Risk

Max Pos 
Risk CRI Areaprodσ measσ

 
Key: District – Agency; NRB – Negative risk band; CRI – Composite Risk Index. 

 
 
 

Table 3.3: Effects of the parameters on payment risk for biased data 

Positive Negative
X1 Sig-Prod -1.28 -2.95 5.16 0.92 3.91
X2 Sig-Dev -0.68 -2.03 1.04 0.77 3.69
X3 Bias -0.05 9.53 -10.26 4.65 3.30
X4 n 0.37 -3.21 3.70 -1.39 -7.99
X1 X2 0.44 0.61 0.00 -0.65 -1.93
X1 X3 0.11 -2.62 3.65 -1.21 -1.47
X1 X4 -0.13 -0.24 -0.17 -0.49 -1.07
X2 X3 -0.05 -2.21 3.32 -1.61 1.27
X2 X4 -0.04 -0.23 0.10 -0.23 -0.95
X3 X4 0.02 0.13 0.32 0.16 -0.65
X1 X2 X3 -0.01 0.82 -1.53 0.48 -0.22
X1 X2 X4 -0.20 0.27 -0.17 0.04 0.48
X1 X3 X4 0.04 -0.18 -0.12 0.15 0.29
X2 X3 X4 0.03 -0.29 0.44 -0.23 -0.37

AreaParameter NRB Maximum Risk CRI

 
Key: NRB – Negative risk band; CRI – Composite Risk Index; Sig-Prod – Standard 
Deviation of Produced Material; Sig-Dev – Standard Deviation of Measurement 
Device. 
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Use of SRA as a Research Tool 
 

At the standard user’s level, sensitivity analyses can easily be conducted with SRA to 
examine effecs of a number of user-modifiable parameters on specification risk, as described in 
the previous section.  Parameters which are not user-modifiable from the standard program 
interface are fixed at those used in IDOT’s current ERS specification. For example the SRA 
program does not allow changes to the pay factor equation from the standard interface. But the 
advanced user of SRA can modify the code as required for the analysis, thereby enabling almost 
unlimited specification approaches to be analyzed. Thus, the analyst would be able to compare 
the risk characteristics of entire specification systems. The following is an example of a research-
level risk analysis conducted using SRA.  
 
Advanced Risk Analysis with SRA 
 
Example #1: Pay Factor Equation 
 
In 2004 IDOT modified its pay factor equation from (3) to (4).  
 

PF = 0.55 + 0.5 * PWL     (But, if PF>1.03, then PF = 1.03)   (3) 
 

PF = 0.53 + 0.5 * PWL     (4) 
 

Where:    
PF    = Pay Factor (%) 

  PWL = Percent Within Limits 
 

Thus, starting in 2003 the pay factor equation was modified to be more stringent (lower pay for a 
given PWL level).  The payment cap was no longer used, since the maximum pay given directly 
by the formula was 103%.  
  

A series of simulation runs were carried out using SRA to investigate the impact that this 
change would have on IDOT ERS pay factors and the associated payment risk. The example 
presented here uses combined and measurement variability, estimated from several ERS 
demonstration projects. First, a brief description of the method for estimating combined and 
measurement variability is presented, with the help of an example. In Table 3.4 the columns 
labeled as “Measured” are the field core densities measured in ERS projects. For each job the 
density values are averaged to arrive at a mean. Then the difference between the first mean 
(contractor mean for job 1 in this case) and the mean for each job is subtracted from the 
measured density to obtain a normalized density. By normalizing the means from each job, it is 
then possible to combine or ‘pool’ the data sets in order to obtain a robust estimate of the 
variability in measured pavement density (combined variability of measurement, production, and 
laydown). In this example the combined variability was found to be 0.85. In the full analysis, 
hundreds of such measurements have been taken from ERS demonstration projects in Illinois 
over the past five years, as will be summarized below.  
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Table 3.4: Example calculations for estimating combined variability 

Measured Mean Normalized Measured Mean Normalized
93.6 93.6 93.8 93.5
93.1 93.1 92.6 92.3
94.7 94.7 94.7 94.4
93.3 93.3 93.8 93.5
92.7 92.7 92.8 92.6
93.3 93.3 93.9 93.6
93.0 93.0 93.5 93.2
94.4 94.4 94.7 94.4
92.6 92.6 93.1 92.8
92.9 92.9 93.6 93.3
91.5 92.0 90.9 91.7
91.5 91.9 91.9 92.6
93.6 94.0 94.0 94.7
94.3 94.7 94.1 94.9
93.3 93.8 92.5 93.3
92.9 93.4 91.5 92.2
93.0 93.4 92.6 93.3
93.2 93.6 93.6 94.3

0.85Combined Standard Deviation = 

1

2

Contractor Density District DensityJob

93.4 93.6

92.9 92.6

 
 
 

Table 3.5 presents an example for calculation of the variability associated with the 
measurement of density. In this case, only a small number of pairs of data has been presented to 
quickly illustrate the concept. In reality mostly the number of measurements would be anywhere 
between 100 and 250. The columns labeled “Contractor” and “District” (the agency) report the 
densities measured by each of these two parties. The next column is the difference of these two 
densities. It should be noted that each pair of densities is measured on split samples. Therefore 
the difference between them is expected to be predominantly composed of measurement 
variability and bias present in the data. The mean value of the differences for each job gives an 
estimate of the bias present. To remove this relative bias, the mean of differences is subtracted 
from the individual differences found to produce normalized differences. The normalized 
differences are then sorted to identify outliers. Outliers are generally identified as those 
normalized difference values which lie farther than three times the standard deviation of the 
normalized differences from their mean. Since the density measurements are expected to be 
normally distributed, the differences also should be normally distributed and hence this 
definition of outliers is retained.  The standard deviation of the normalized differences from 
which outliers have been removed provide an estimate of the measured variability as discussed in 
the preceding section. In the example presented here the standard deviation of the normalized 
differences was found to be 0.50. Therefore, measurement variability for this set of paired tests 
can be found as follows.  
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As stated earlier actual measurement variability is estimated using hundreds of such data points.  
 

Table 3.5: Example calculations for measurement variability 

Job Contractor District Difference Mean of Diff. Normalized 
Diff.

Norm. Diff. In 
Asc. Ord.

Std. Dev 
of NDAO

93.6 93.8 -0.2 0.1 -0.7
93.1 92.6 0.5 0.8 -0.7
94.7 94.7 0.1 0.4 -0.7
93.3 93.8 -0.5 -0.2 -0.4
92.7 92.8 -0.2 0.1 -0.3
93.3 93.9 -0.6 -0.3 -0.3
93.0 93.5 -0.5 -0.2 -0.2
94.4 94.7 -0.3 0.0 -0.2
92.6 93.1 -0.5 -0.3 -0.1
92.9 93.6 -0.7 -0.4 0.0
91.5 90.9 0.6 0.3 0.1
91.5 91.9 -0.4 -0.7 0.1
93.6 94.0 -0.4 -0.7 0.1
94.3 94.1 0.2 -0.1 0.3
93.3 92.5 0.8 0.5 0.4
92.9 91.5 1.4 1.2 0.5
93.0 92.6 0.4 0.1 0.8
93.2 93.6 -0.4 -0.7 1.2

0.50

1

2

-0.3

0.3

 
Key:  NDAO – Normalized Difference in Ascending Order. 

 
Using data from several ERS demonstration projects from the years 2000 to 2002, the following 
measures of in situ density variation were obtained: 
 

• Combined variability = 1.15%, where ‘%’ refers to percentage of max theoretical specific 
gravity, Gmm  

• Measurement variability = 0.56% 
 
For combined variability, the highest value for a given project was found to be 1.45% and the 
lowest was 0.85 %. 

 
The total number of samples (N) cored for measuring density in ERS demonstration 

projects have varied between 100 and 250. Therefore, different simulations were run with N = 
50, 100 and 200. Therefore, nine simulations were run using the old pay factor equation and then 
repeated using the new PF equation. Table 3.6 presents all the combinations of parameters used 
in the analysis.  
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Table 3.6: Parameter values used in simulation runs for the analysis 
 

Sim. Run 
#

Combined 
Variability

Production 
Variability (σ-p)

Measurement 
Variability (σ-m)

Total # Samples 
(N)

1 0.85 0.64 0.56 50
2 1.15 1.00 0.56 50
3 1.45 1.34 0.56 50
4 0.85 0.64 0.56 100
5 1.15 1.00 0.56 100
6 1.45 1.34 0.56 100
7 0.85 0.64 0.56 200
8 1.15 1.00 0.56 200
9 1.45 1.34 0.56 200  

 
 
Results of Pay Factor Analysis 
 
 Figures 3.6-3.14 present the risk plots, from the simulation runs evaluating IDOT’s 
Superpave asphalt ERS, under the older and newer pay factor equation. One challenge of 
simulation modeling is developing a systematic scheme for the analysis of the enormous number 
of results that are generated.  The present analysis is further complicated by the fact that some of 
the simulation outputs, such as the risk factor, are new concepts and therefore not familiar to 
most readers.  To assist the reader, a detailed summary is presented to outline and describe the 
scheme used herein to present standard “sets” of simulation results: 
 

• The plots on the left half of the page show the actual (simulated) mean pay determined by 
the simulation for all mean densities, along with its 90% confidence interval (CI). They 
also show the base line pay or ideal pay, in a thick solid line. With this plot it can be 
readily observed how the average and +/- 90% CI of pay levels would vary for different 
projects (with different variabilities) as a function of the mean density. A baseline pay 
below the mean pay line represents agency risk, as the agency would be paying above the 
correct pay in this instance. The parts of the plot where these lines either cross or merge 
with each other represents balanced risk for both parties. However, if the ideal pay line 
goes above the mean pay line there is higher probability that the contractor would be 
underpaid relative to the correct pay, i.e., contractor risk. The probability of risk in either 
case can be observed based on the distance of the ideal pay line from the confidence 
intervals for the mean pay.  

• The plots on the left half of the page are the risk plots (as described earlier in the report), 
which result after replotting the curves on the left after normalizing relative to the 
baseline (or correct) pay.  

• The first row of plots in each set of plots (top two) represents the analysis using the new 
pay factor equation and the second row of plots (bottom two) correspond to the old pay 
factor equation.     
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New PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 50

Old PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 50

-10
-8
-6
-4
-2
0
2
4
6
8

10

91.5 92.5 93.5 94.5 95.5 96.5
Density (%Gmm)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean Risk LCL-Risk UCL-Risk

70

75

80

85

90

95

100

105

91.5 92.5 93.5 94.5 95.5 96.5
Density (% Gmm)

PF
 (%

 B
id

 A
m

ou
nt

)

Mean-PF LCL-PF UCL-PF Base Line

70

75

80

85

90

95

100

105

91.5 92.5 93.5 94.5 95.5 96.5
Density (% Gmm)

PF
 (%

 B
id

 A
m

ou
nt

)

Mean-PF LCL-PF UCL-PF Base Line

-10
-8
-6
-4
-2
0
2
4
6
8

10

91.5 92.5 93.5 94.5 95.5 96.5
Density (%Gmm)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean risk LCL-Risk UCL-Risk

 
Figure. 3.6: Analysis results for low production variability and low number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 50

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 50
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Figure. 3.7: Analysis results for medium production variability and low number of specimens: old vs. new PF equation  
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 50

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 50
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Figure. 3.8: Analysis results for high production variability and low number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 100

Old PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 100
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Figure. 3.9: Analysis results for low production variability and medium number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 100

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 100
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Figure. 3.10: Analysis results for medium production variability and medium number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 100

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 100

-10
-8
-6
-4
-2
0
2
4
6
8

10

91.5 92.5 93.5 94.5 95.5 96.5
Density (%Gmm)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean Risk LCL-Risk UCL-Risk

70

75

80

85

90

95

100

105

91.5 92.5 93.5 94.5 95.5 96.5
Density (% Gmm)

P
F 

(%
 B

id
 A

m
ou

nt
)

Mean PF LCL-PF UCL-PF Base Line

70

75

80

85

90

95

100

105

91.5 92.5 93.5 94.5 95.5 96.5
Density (% Gmm)

P
F 

(%
 B

id
 A

m
ou

nt
)

Mean PF LCL-PF UCL-PF Base Line

-10
-8
-6
-4
-2
0
2
4
6
8

10

91.5 92.5 93.5 94.5 95.5 96.5
Density (%Gmm)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean Risk LCL-Risk UCL-Risk

 
Figure. 3.11: Analysis results for high production variability and medium number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 200

Old PF Equation            Measurement Variability = 0.56 Production Variability = 0.64 N = 200
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Figure. 3.12: Analysis results for low production variability and large number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 200

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.00 N = 200
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Figure. 3.13: Analysis results for medium production variability and large number of specimens: old vs. new PF equation 
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New PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 200

Old PF Equation            Measurement Variability = 0.56 Production Variability = 1.34 N = 200
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Figure. 3.14: Analysis results for high production variability and large number of specimens: old vs. new PF equation 
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Measurement Variability = 0.53 Production Variability = 0.60 N = 10

Measurement Variability = 0.53 Production Variability = 0.60 N = 20

-15
-12.5

-10
-7.5

-5
-2.5

0
2.5

5
7.5
10

12.5
15

2.5 3 3.5 4 4.5 5 5.5
Air Voids(%)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean Risk LCL-PF UCL-Risk

70

75

80

85

90

95

100

105

2.5 3 3.5 4 4.5 5 5.5

Air Voids (%)

P
F 

(%
 B

id
 A

m
ou

nt
)

Mean PF LCL-PF UCL-PF Base Line

70

75

80

85

90

95

100

105

2.5 3 3.5 4 4.5 5 5.5
Air Voids (%)

PF
 (%

 B
id

 A
m

ou
nt

)

Mean PF LCL-PF UCL-PF Base Line

-15
-12.5

-10
-7.5

-5
-2.5

0
2.5

5
7.5
10

12.5
15

2.5 3 3.5 4 4.5 5 5.5
Air Voids (%)

R
is

k 
(%

 B
id

 A
m

ou
nt

)

Mean Risk LCL-Risk UCL-Risk

 
Figure 3.15: Analysis results for air voids: N=10 vs. N=20 
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Discussion of Pay Factor Analysis Results 
 
 The simulation results presented in Figures 3.6-3.15 can be summarized as follows: 
 

• As expected, the plots show a clear downward shift in the actual payment, baseline 
payment, and upper and lower confidence limits for the new pay factor equation relative 
to the old PF equation.  This can be observed by comparing either the vertically aligned 
plots on the left-hand side of a given page, or the vertically aligned plots on the right-
hand side of a given page. 

• There is an appreciable difference in the width of the narrow risk band. The narrow risk 
band was reduced in all the cases. As apparent in the left-hand plots, in the old pay factor 
equation the final pay was capped at 103%, although the maximum pay calculated using 
the equation was 105%. Therefore, once the ideal pay or baseline (represented by the 
thick solid line in the middle plots) reached 103%, any further increase in density towards 
the middle of the spec limits (and thus improved the PWL), did not improve the PF above 
103%. Therefore, in these areas there is no difference between the baseline pay and the 
actual pay leading to low or no risk, which constitutes the narrow risk band. But with the 
new pay factor equation, pay cap is no longer in effect. Therefore, the difference between 
baseline pay and actual pay, if any, would continue until maximum pay is reached.  

• In the case of either of the pay factor equations, as the number of specimen tested (N) is 
increased, the confidence interval for pay as well as for risk becomes narrower around the 
corresponding mean values. Therefore, the advantage of using more samples to reduce 
probability of risk remains intact with the modification of the pay factor equation.  

• It should be noted that in the case of analysis performed on voids (Figure 3.15), the 
simulation results are presented in a different arrangement compared to that used for the 
density simulations (Figures 3.6-3.14).  The two rows of vertically aligned plots on the 
page for Figure 3.15 allow a comparison of sample size, corresponding to cases with 
N=10 and N=20, respectively. In this case all the plots correspond to the new PF 
equation. Also the measurement and production variabilities for these simulation runs 
were calculated using the voids data from ERS demonstration projects (as described in 
the previous section) and found to be 0.53 and 0.60, respectively.  

• The most prominent feature in the plots of voids in Figure 3.15 are, that although the 
mean risk is similar in magnitude, the confidence intervals are much wider and the peak 
of confidence interval goes as high as 12.5% pay. This can also be deduced from the left-
hand side plots which show that the confidence interval on the actual pay is 
comparatively much wider. Therefore, the difference between the ideal pay line and the 
confidence interval lines is also greater. Although the tolerance limits for density and 
voids comparison are the same, the number of samples tested in the case of voids is 
generally much smaller, leading to higher risk levels. 

• The higher ratio of measurement variability relative to production variability in the case 
of voids also creates a larger confidence interval on payment risk.  

 
The key conclusions that can be deduced from this analysis are:  
 

(1) The absence of a payment cap in the new PF equation has the effect of reducing the 
narrow risk band for the specification.  This may tend to increase the likelihood of a 
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dispute between parties, since the contractor risk is higher.  The main motivation for 
changing the pay factor equation was to bring the actual project pay more in line with pay 
levels deemed appropriate, based upon an IDOT internal review of demonstration 
projects.  To this end, other methods of arriving at a lower pay factor can also be 
explored, which may not have the same effect of reducing the narrow risk band.  One 
example would be to alter the way in which pay factors are combined, such as using the 
lower of the two plant test pay factors instead of using the average.  Another possibility 
would be to use a multiplicative approach to combining some or all of the pay factors, 
which would avoid the “averaging out” of a low pay factor with one or two higher pay 
factors.  Currently IDOT uses 30% of the asphalt content PF, 30% of the PF on voids 
from gyratory compacted specimens in the plant, and 40% of the PF for field density as 
measured from cores. 
 
(2)  Payment risks are higher for air void measurements as compared to field density.  
This is due to two factors: (i) the reduced number of samples tested, and (ii) the higher 
ratio of measurement variability as compared to production variability.  Since the 
production variability levels seem reasonable, the primary area of concern is the 
measurement variability for this parameter.  Efforts to reduce the measurement variability 
associated with plant voids will pay large dividends in terms of reducing payment risks 
and therefore reducing the possibility for disputes.   
 

Example #2: Reducing Sample Size of In-Situ Density Testing 
 

Larger sample sizes provide higher confidence in computed averages and standard 
deviations and thus better estimates of pay factor. This means that payment risk also would be 
lower, as has been demonstrated through sensitivity analysis. But larger sample size means more 
sampling and testing which translates into higher personnel needs and higher costs. In addition, 
for the case of in-situ density measurement, the larger sample produces destructive core holes in 
the pavement, which even though filled with patching material, will not perform as well as 
undisturbed pavement. IDOT as well as the highway contractors have shown keen interest in 
exploring the possibility of reducing the sample size in the case of in-situ density testing, if 
possible, without significantly increasing risk.  
 
 Since payment risk is affected by several factors, e.g, sample size, tolerance limits, and 
quality level analysis procedure, there could be several ways to adjust the other factors so that 
the risk can be maintained within a certain acceptable level. Following are two such cases which 
demonstrate that it is possible to reduce sample size, although to a limited degree, without 
appreciably increasing payment risk.  
 
Exploratory Analysis for Reduced Sample Size  
 
 This section presents the results of two analyses aimed at exploring ways to reduce 
sample size in IDOT’s asphalt ERS.  The two approaches are: 
 
 (1)  Reduction of contractor sample size, similar QA testing amount 
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 (2)  Reduction of number of cores across mat from 5 to 3. 
 

 
Approach 1: Reduction of contractor sample size and  similar QA testing amount 
 

Figure 3.16 (a) shows a typical risk plot when analysis is done for in-situ density. The 
results correspond to the 2003 ERS used by IDOT.  Selected typical values that remain 
unchanged in the analysis are as follows.  

 
• Production variability = 0.40 %Gmm 
• Measurement Variability = 0.75 %Gmm 
• Bias = 0.0 for all the three parties 

 
 The plot shows risk corresponding to density between 91.5% and 97% Gmm. It should be 
noted that within this range of density most risk is assumed by the contractor, while agency risk 
is higher for production outside of the specification limits.  The regions of higher agency risk are 
outside of limits selected for plots. Here the focus is on the areas where the vast majority of most 
production has been found to occur on the ERS projects in Illinois; that is, between the upper and 
lower specification limits.  The plot in Figure 3.16 (a) corresponds to a sample size of 90. The 
plot shown to the right (Figure 3.16 (b)) shows the risk when the following two significant 
changes are made: 
 

• The number of samples have been reduced to one fifth i.e. N = 18 
• Minimum QA testing has been increased to 100% as compared to 20% in the 2003 

end result specifications of IDOT. 
 

Following are the changes in the risk characteristics apparent from Figures 3.16 (b) as a result of 
the two aforementioned changes in the 2003 ERS:  

 
• Maximum negative risk (contractor risk) for the 90% confidence interval remains 

almost the same 
• The upper limit of the confidence interval has moved up from -5% to zero in the 

middle while some portion was shifted into the positive (agency) risk region 
• The maximum negative mean risk has decreased from -8% to -5% 

 
 In summary, in the original 2003 specifications for this particular case, the worst-case 
scenario for a production average within the specification limits would lead to 5 to 11%  
contractor underpayment of the bid amount, with 90% certainty.  After the abovementioned 
changes (reduction in sample size and narrowing of comparison limit), the underpayment in the 
worst-case scenario would range between zero and 11% of the bid amount, with 90% certainty.  
The overall payment risk is appreciably reduced for the contractor, while the agency risk is 
slightly increased for jobs produced with overall average density within the specification limits. 
This demonstrates that a much smaller contractor sample size can be used with minimal change 
in risk for production averaging at a level between the specification limits. Also, although the 
minimum QA test frequency has been increased by five times, the total number of QA tests 
required by the state remains unchanged since the sample size was reduced by a factor of five.  
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Figure 3.16: Effect of Reducing Contractor Sample Size and Narrowing Comparison Limits 
 
  
 A similar attempt was made to explore the possibility of reducing the sample size by the 
same proportion for a smaller job where N = 60.  The plots shown in Figures 3.16 (c) and (d) 
correspond to this. They show that although the negative mean risk has been reduced, the 
maximum negative risk increased from -11.5% to -12.5%.  The increased agency risk at the USL 
and LSL to a rather high level of 15% makes a reduced sample size of 12 questionable. This 
trend was even more pronounced for an analysis conducted with N = 30 and a reduced N of 6, 
indicating a limit beyond which further reduction in sample size leads to unacceptable risk 
levels.   Nevertheless, the above analysis clearly suggests that the SRA tool can be used by the 
agency to optimize ERS sampling sizes, balancing the relative tradeoffs between reduced 
sampling and testing and increased agency. 
 
Approach 2:  Reduction of number of cores across mat from five to three 
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The second strategy for reducing the contractor sample size consists of changing the 
number of cores to be sampled across the mat for each sublot from 5 to 3 while still performing 
QA tests on at least one of the three. The other parameter values are the same as those used in the 
preceding example.  Figure 3.17 (a) shows the risk plot expected when adhering to the 2003 
ERS, while Figure 3.17 (b) shows the case when only three cores are taken across the mat.  For 
the reduced testing scheme, the maximum negative (contractor) risk has increased only slightly, 
by -0.5%, as a result of this change. At the same time the upper limit of the 90% confidence 
interval increased by 1%, thus widening the confidence interval slightly, similar to the results 
found in approach #1. Once again, while the total number of cores would be greatly reduced (54 
as compared to 90), the contractor risk is decreased on average and the agency risk is only 
slightly increased.  Figures 3.17 (c) and (d) show the case when sample size is reduced from 60 
to 36, also showing a favorable reduction in sample size with relatively little change in risk. 

 
Discussion of Reducing Sample Size Results 
 

It should be noted that in all of the cases above, some additional risk is assumed by the 
agency for the case of production averages outside of specification limits.  This does not 
commonly occur in practice since production outside of specification limits represents a PWL 
below 50 and thus a pay factor below 80%, which would be highly undesirable for the 
contractor.  Nevertheless, the additional risk assumed by the agency must be considered when 
evaluating the pros and cons of adopting the test reduction strategies outlined above.  On the 
other hand, these possible specification changes have the dual benefit of 1) reducing testing 
burden (and pavement damage in the case of field density), and 2) slightly reducing contractor 
average risk for production between the specification limits.  Based upon this analysis, it seems 
that the advantages outweigh the disadvantages and it would be advantageous for both parties 
involved if the sample reduction strategies were employed. 

 
Summary 
 

This chapter presented example strategies to demonstrate research-oriented uses of SRA. 
In general, SRA can be used to develop a better understanding of how changes in individual ERS 
specification parameters can affect the payment risk for the contractor (seller) and agency 
(buyer). This knowledge can be used to explore the possibility of developing desirable changes 
in an existing ERS, such as reducing sample size, reducing risk, optimizing tolerance limits, 
changing pay factor equations, and the pros and cons of pay factor equations with payment caps.  
An analysis of the old and new IDOT pay factor equation for Superpave asphalt ERS was 
conducted, which highlighted the pros and cons of the new pay factor formula.  The absence of a 
pay cap in the pay factor formula appears to create a slight increase in the risk levels in the IDOT 
ERS system at the higher pay levels.  A small, residual contractor risk throughout much of the 
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Figure 3.17: Another possible strategy for reducing sample size 
 
narrow risk band is present. Specific examples were presented of how IDOT’s existing ERS for 
Superpave HMA could be modified to reduce contractor and agency testing.  Two strategies 
were presented which appear to be promising methods for reducing the number of field cores 
required, while tending to balance risks between parties more equitably.  This would also have 
the benefit of reducing the amount of pavement damage caused by coring and patching of the 
new pavement, resulting in enhanced pavement life and possibly even enhanced safety over the 
pavement’s life. 
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Chapter 4 
 

Summary, Conclusions, and Recommendations 
 
 
 
Summary 
 

End-Result Specifications (ERS) for asphalt pavement construction offer potential 
benefits over method-related specifications.  They can be used in conjunction with or 
replacement of traditional QC/QA specifications as a means to enhance contractor innovation, 
reduce agency testing burden, and enhance overall pavement quality.  Unlike other 
manufacturing sectors, the measure of pavement quality is not as simple as detecting and 
quantifying defective items.  The quality of pavements is assessed with imperfect measuring 
tools operated by humans, who may inadvertently or intentionally introduce measurement 
variability or bias.  As a result, the ability to measure quality and assign appropriate payment 
bonuses and penalties is an imperfect system. 

 
Risk is a natural entity in just about every business enterprise, but in order to properly 

utilize and administer a contractual process involving risk, one must first have an accurate 
measure of that risk.  In the past, existing methods for balancing risks in pavement construction-
related ERS contracts, including the AASHTO approach, did not properly consider all of the 
factors affecting risk.  Therefore, the administration of such contracts has carried the heavy 
burden of loosely defined specification risk levels.  

 
This report detailed the development of a simulation tool which can be used to analyze 

specification risk and to develop ERS systems with user-managed risk levels.  The program, 
called Simulated Risk Analysis (SRA), computes the risk of overpayment (agency risk) or 
underpayment (contractor risk) as a function of many factors, including: number of tests, 
production and measurement variability, bias, pay formula and pay caps, and specification limits.  
It also considers the quality assurance and third-party testing scheme used.  In general, SRA can 
be used to develop a better understanding of how changes in individual ERS specification 
parameters can affect the payment risk for the contractor and agency. This knowledge can be 
used to explore the possibility of developing desirable changes in an existing ERS, such as 
reducing sample size, reducing risk, optimizing tolerance limits, changing pay factor equations, 
and the pros and cons of pay factor equations with payment caps.   

 
An analysis of the old and new IDOT pay factor equation for Superpave asphalt ERS was 

conducted, which highlighted the pros and cons of the new pay factor formula.  Specific 
examples of how IDOT’s existing ERS for Superpave HMA could be modified to reduce 
contractor and agency testing were presented.  Two strategies were presented which appear to be 
promising methods for reducing the number of field cores required, while tending to balance 
risks between parties more equitably.  This would also have the benefit of reducing the amount 
of pavement damage caused by coring and patching of the new pavement, resulting in enhanced 
pavement life and possibly even enhanced safety over the pavement’s life. 
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Limitations of Current Simulation Programs 
 

While the simulation models presented in this report were shown to provide significant 
insight into the phenomena of payment risks involved with ERS systems, there are clearly 
limitations to the models. Some of the key limitations are now discussed. 
 

(1) Human factors in decision making: Any highway construction project, or testing 
program, is subject to human decision making. An example of simple human decision 
making that is considered in the SRA model is the logic of whether a contractor will 
accept or reject district data depending on which result is closer to the specification 
target.  At the very best it can be accepted only as a simplified model as compared to how 
complicated and dynamic human thinking can be in these situations.   For example, 
complex human decision making could arise when a material ERS is used in conjunction 
with a lane-rental incentive/disincentive contract clause.  Quality could possibly be 
exchanged for expediency towards the end of a project if the magnitude of the lane rental 
bonuses and penalties greatly exceed the ERS bonuses and penalties when a simple 
additive or weighted averaging scheme is used for the combined pay factors.  It is 
impossible to develop computer logic to perfectly predict human decision making.   

 
(2) Non-standard practices: All such construction projects are ultimately monitored and run 

by human beings. Although efforts are made to standardize professional practices like 
construction, testing, analysis and reporting, slight or appreciable deviations from such 
practices are not unprecedented. Only the simplest forms of human error and bias can be 
considered and/or detected, and therefore, it must be acknowledged that risk assessment 
provides a useful estimate but not an exact value of specification risk. In extreme cases 
the data may be willingly shaped in a particular way. It is almost impossible for a 
mathematical or algorithmic model to simulate such phenomena.  Rather than attempt to 
model these complex situations, it is assumed that their occurrence is infrequent and can 
be minimized through programs of quality compliance, inspection, and auditing. 

 
(3) Normality assumption: Literature indicates that quality characteristics, e.g., in-situ 

density, air void content, etc., in highway construction projects are generally normally 
distributed. But this is an empirical observation and not a rigorously proven fact. 
Therefore, simulations like ILLISIM or SRA, which are based on this assumption, may 
not provide reliable results in cases where the data are actually not normally distributed. 
For example, pavement density may be suddenly shifted during construction due to many 
variables, including weather change, equipment or operator changes, or a change in the 
rolling pattern. This would create a bimodal rather than a normal distribution.  However, 
this particular case has been studied and reported by Buttlar et al. [2001] to have a 
relatively low impact on project pay factors. 

 
In summary, it should be recognized that simulation results are indicative rather than 

predictive. This means that these results should be used to guide decisions in general. But 
they cannot be used to provide direct predictions for a particular project.  It should also be 
acknowledged that the level of risk for each party that will be viewed as acceptable are not 
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fixed values and that higher contractor risk can translate into higher dispute rates and higher 
bid estimates.  Risk levels must be selected by the agency based upon many factors, such as 
agency staffing limitations and expertise level, material and overall project costs, user-delay 
costs, local contractor expertise, and level of competition between local contractors. 
 

Conclusions 
 
 Based upon the results of this research, the following conclusions have been drawn: 
 

1. End-Result Specifications for asphalt pavement construction involve non-negligible risk 
to the agency and contractor due to the presence of measurement variability and testing 
biases. 

2. The SRA program provides realistic, repeatable measures of ERS risk, which can be used 
to develop, analyze, and adjust ERS systems. 

3. Based upon the analyses conducted in this study, it apprears to be feasible to significantly 
reduce the number of pavement cores taken on higher tonnage Illinois ERS projects 
without a significant impact on payment risk. 

4. The absence of a pay cap in the ERS pay factor formula introduces a small, residual 
contractor risk for production near the center of the specification limits based upon the 
definition of risk adopted in this study. 

 
 
Recommendations  
 
 Based upon the findings of this study, the following recommendations are made: 
 

1. Since it appears that the number of pavement cores taken on Illinois ERS projects can be 
reduced considerably without a significant impact on payment risk, it is recommended to 
specify reduced number of cores and density measurements for future IDOT ERS 
projects.  Additional SRA modeling runs could be performed to fine-tune the number of 
tests required. 

2. As future changes are made to the ERS specification, the reinstatement of the pay factor 
cap should be considered as a means to reduce risk levels at higher pay factors. 

 
 
Recommended Areas for Future Work 
 

 
1. Characterizing risk plots: Risk plots are plots of payment risk against mean value of a 

certain quality characteristic. The range of the quality characteristic is generally the full 
range of values that may occur in an actual project. Depending on the value of other 
parameters such as production and measurement variability, and number of samples the 
shape of the risk plot can change considerably. This change can be easily observed 
visually. But to be able to subject this to rigorous mathematical analysis it is necessary to 
characterize these plots in a quantifiable way. Then multiple sets of plots can be easily 
compared. In this report such an attempt was made by identifying the maximum positive 
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and negative risks across the range. But more such characteristics may be required for 
more complete analysis, like area enclosed by the confidence limits within a certain width 
of quality characteristic, etc.  

 
2. Modeling human decision elements: If more of human decision elements involved in 

actual highway construction projects can be included in the model, the results obtained 
from the simulation may be more realistic. Such modeling is possible by tapping into the 
experience of officials and professionals working on such projects.  

 
3. More work can be done to determine in what situations the project data may not be 

normally distributed. This would help identify possible cases where the simulation results 
may not be applicable. Also, work can be done as to how the simulation results can be 
modified in those cases.  

 
4. Smoothness and thickness of the as-built pavement are also important characteristics in 

determining payment to the contractor.  Further study is needed to determine how best to 
combine these pay factors with those associated with material quality. 

 
 

Other Recommended Uses for the Current Simulation Program 
 

With slight modifications, the SRA simulation program can also be used to develop or 
modify ERS programs for soils and aggregates, Portland cement concrete pavements, and other 
transportation materials and constructed facilities. 
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APPENDIX A1 
 
ILLISIM 
 

University of Illinois researchers developed a computer simulation program, called 
ILLISIM, to analyze the risks involved with end-result specifications (ERS).  The detailed 
assessment of agency and contractor risks possible through ILLISIM can assist in establishing 
sampling protocols, measurement methods, specification limits, retest provisions, pay scales, and 
pay caps in such a manner to balance the tradeoffs between number of samples and payment 
risks, and hence disputes.  

 
A flowchart describing a typical execution sequence in ILLISIM is given in Figure 

A1.1a-b.  Based upon the assumption that construction and measurement variability can be 
adequately approximated by a normal distribution curve (bell curve) [Hall (2002)], ILLISIM 
randomly generates quality characteristics within given SUBLOTS and LOTS of material on a 
paving job.  

The user has the ability to determine how ILLISIM evaluates the source(s) of variability 
depending on how easily individual sources of error can be identified.  If a given characteristic 
has separable, measurable sources of variability, the user can determine how each source 
independently affects the determination of quality.  Standard deviation is considered as an 
estimate of the variability that is being mentioned in this report. Using density as an example, 
ILLISIM can consider three individual elements of variability (longitudinal, transverse, and 
measurement device).  However, if the user wishes to analyze a database of historical 
measurements from which no individual source of variability can be separated, one individual 
standard deviation can be used to encompass all of the variability throughout the process. 
 

Based upon the inputs, ILLISIM generates possible measurement readings that would be 
encountered during construction, using random numbers and an inverse normal distribution 
generation algorithm (Monte Carlo simulation). The inverse algorithm takes a mean value of a 
quality characteristic, standard deviation, and random number, and outputs a density value at the 
location on the bell curve associated with the random number supplied.  The random number 
represents the cumulative area under the standard normal distribution curve.  For instance, a 
random number of 0.025 would happen to give the quality characteristic at the lower 95% 
confidence interval (of a two-tailed curve), while a random number of 0.5 would render the value 
unchanged.  This process is repeated for each independent level of variability present in the 
system, giving a distribution of simulated measurements within a given LOT of material akin to 
measurements typically obtained in the field. 
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Figure A1.1a: ILLISIM program flowchart, part 1 of 2.  Letters ‘A’ and ‘B’ at the bottom of the chart indicate connecting points 
for the ensuing figure. 
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Figure A1.1b: ILLISIM program flowchart, part 2 of 2.



 
ILLISIM uses the simulated measurements to compute a mean, standard deviation, 

percent within limits, and pay factor for each LOT of material considered.  For simulation 
modeling of processes with high variability, it is important to run a large number of simulations 
to adequately describe the characteristics of the system.  A minimum of 1000 LOTS were 
typically simulated for each unique group of input parameters considered.  ILLISIM keeps track 
of a large number of runs, so that a statistical distribution of correct pay versus actual pay for 
individual LOTS and complete JOBS can be plotted. 

 
 The sampling schemes considered in this study for as-constructed pavement density are 
summarized in Figure A1.2, which can be described as follows: 

• Dual-Stratified Random Sampling Method — A length of pavement, or LOT, can be 
divided into equal SUBLOTS, which can be further subdivided by the number of transverse 
measurements desired per SUBLOT, as shown in Figure A1.2.  Sampling locations are based 
upon a conventional stratified random layout in the longitudinal direction.  In the transverse 
direction, samples are to be taken at the 2-, 4-, 6-, 8-, and 10-ft offsets, in random order.  
Means and standard deviations are then computed using all measurements (N=15).  Similar 
groupings can be developed for other values of N.  For instance, in a later section, a 
comparison is made between N=9 and N=15 measurements, where the N=9 LOT consists of 
three SUBLOTS with 3 measurements taken across the paving lane. 

• Stratified-Average Sampling Method — This method utilizes an identical sampling layout 
as the dual-stratified method.  However, the mean and standard deviation are computed in a 
different manner, as outlined in Figure A1.2.  In summary, an average density is first 
obtained for each of the three SUBLOTS.  Then, a LOT average and standard deviation are 
computed using the three SUBLOT averages. 

Each of the two sampling methods has distinct advantages and disadvantages.  The dual-
stratified method gives larger standard deviations, which reflect the combined standard deviation 
caused by variability in both the longitudinal and transverse directions.  The stratified-average 
method has a smaller standard deviation, since the effect of transverse standard deviation is 
essentially minimized by first averaging density values in each SUBLOT.  The motivation for 
investigating this method was to stabilize PWL-predictions on a per-LOT basis in an attempt to 
minimize the possibility of frequent disputes, particularly when marginal quality levels arise. 
 

Inputs for ILLISIM 

The user supplies the following inputs to ILLISIM: 

(1) Mean value of as-produced or as-constructed quality characteristic (e.g. density, asphalt 
content, etc.) to be considered, or, more commonly, a range of such mean values.   

(2) Standard deviation(s) of the quality characteristic(s) associated with production and 
construction  
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Figure A1.2: Various Schemes for Density Measurement Locations  
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(3) Standard deviation of the measurement device  (For density measurement using a nuclear 

gauge, variability depends on the proximity to the mean value at which the gauge is 
correlated to cores, described in more detail in a later section.) 

(4) Number of measurements 
(5) Sampling arrangement (e.g., completely random, dual-stratified random, stratified-

averaging method, etc., described in more detail in a later section) 
(6) Specification limits 
(7) Pay factor equation 
(8) Pay limits or "caps" (per lot and per job) 

 
 

Output from ILLISIM 
 

Figure A1.3 shows typical output from ILLISIM, and the progression of analyses that 
were conducted to assess relative risks for the producer and agency. First, simulated density 
measurements were used to obtain averages and standard deviations according to Figure A1.2.  
Next, PWL values and pay factors were determined (Figure A1.3 (a)).  A separate program 
called "Baseline" was developed, which determines the "correct pay" for the input values given, 
based upon a very large number of simulations (uses 40,000 randomly generated density values).  
The definition of correct pay is somewhat arbitrary, so a definition of the approach used herein is 
appropriate.  Correct pay was based upon the pay factor that would be determined over the long 
run under acceptable levels of production and measurement device variability.  Pay factor 
differences per LOT and per JOB are computed using ILLISIM, which are then compared to the 
correct pay value (Figures A1.3 (a) and (b)).  Pay factor differences arise since a discrete number 
of measurements will not typically lead to an exact measure of mean and standard deviation for 
any given LOT. 

Figure A1.3 (c) illustrates a typical plot used to assess payment differences, or payment 
errors that can be expected for a given set of inputs.  These results are generally shown across a 
range of mean density of construction levels, to illustrate the increased risk of payment error for 
LOT averages that happen to be near the specification limits (e.g., when marginal quality levels 
arise).  Maximum and minimum payment errors (risks) per LOT (based upon 1000 LOTS) and 
per JOB (100 JOBS) are given.  Also plotted are the 95% confidence intervals for pay 
differences relative to mean pay, which allow the analyst to identify typical risk envelopes, 
independent of possible extreme values for maximum or minimum pay difference.  Finally, by 
defining the 95% confidence intervals on payment error as a "risk index," risk levels can be 
conveniently compared between different sampling methods and number of measurements, for 
example, as illustrated in Figure A1.3 (d).  
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Figure A1.3: Development of a Risk Index Plot from ILLISIM Results 
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Figures A1.4-A1.8 summarize other outputs from the ILLISIM runs. Some general 

observations are as follows: 
 

• As the number of measurements per LOT is increased, risk for both parties decrease. 
• The risk of over- or under-payment is much lower when viewed on a per-JOB basis rather 

than a per-LOT basis (e.g., Figure A1.4 (a) versus (b)).  It is important to be able to view 
these risks separately, since disputes can arise if the contractor risk on the per-LOT basis is 
too high even if the per-JOB risks are low.  In general, risks tend to diminish due to the 
statistical tendency to arrive at the correct payment estimate as more LOTS are assessed. 

• The risk level for both parties is lowest at the middle of the specification range, which, in this 
case, is 94% Gmm.  This is because unless the standard deviation is exceptionally high, typical 
errors in estimating the mean and standard deviation in this case are not enough to cause the 
predicted normal distribution to shift outside the specification limits .  Hence, 100 PWL is 
estimated almost invariably, thus eliminating risks for payment errors. 

• Conversely, risks for both parties are greatest when the mean density of construction is near 
specification limits.  This might indicate a benefit in obtaining more measurements when 
marginal quality is detected.  

• The stratified-average sampling method (Figure A1.5) performs very well (low risks for both 
parties), between specification limits, but poorly in the vicinity of specification limits.  This 
is caused by the low standard deviation resulting from the averaging method used.  A low 
standard deviation gives a narrow bell curve, which renders the PWL prediction to be very 
sensitive to small errors in estimating the average density (e.g., the area under the narrow bell 
curve can easily shift from a very high PWL to a very low PWL with a small shift across the 
specification limit).  So, while the lower standard deviations associated with taking the 
"average of the average" in the stratified-average method might intuitively be assumed to 
lead to the reduction of errors in PWL estimation, this is not always the case. 

• The dual-stratified sampling method (Figure A1.4) does not perform as well as the stratified-
average method between specification limits; however, the method results in lower risks 
around the specification limits. 
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Figure A1.4: Per-LOT Risk Analysis vs. Per-JOB Risk Analysis for Dual-Stratified 

Sampling Method 
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Figure A1.5: Per-LOT Risk Analysis vs. Per-JOB Risk Analysis for Stratified-Average 
Sampling Method 
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• Figures A1.6 and A1.7 show risk analysis plotted versus mean density.  Due to the statistical 
nature and randomization of the Monte Carlo simulation, the results are assumed to be 
symmetric around the center of the specification range while any differences simulated on a 
per-lot basis are insignificant and will be averaged out in the per-job analysis from which pay 
is determined.  Due to this symmetry and the fact that construction generally targets the 
lower end of the specification range, these figures were plotted over the lower end of the 
specification range with greater resolution near the lower specification limit (91%) to show 
trends of risk as they approach the allowable specification limits. 

• Figure A1.6 is a convenient way to compare the two sampling methods considered.  The risk 
index bound is a statistically described bound on potential payment error.  In the long run, 
95% of payment errors will fall within the risk index bound. 

• Figure A1.7 compares nuclear gauge risks to risks associated with basing payment on density 
measured from pavement cores, for identical sampling methods.  Although core standard 
deviations were modeled to be significantly lower than the nuclear gauge, the relative risks 
were found to be surprisingly similar. 

• An additional consideration in comparing the nuclear gauge versus cores for acceptance is 
test bias.  The aforementioned conclusion assumes that a correlation is established between 
density measured with the nuclear gauge and density measured on pavement cores, for which 
an estimate of device variability can be obtained.  After correlation, the bias is assumed to be 
minimal.  However, in practice, the accuracy of the correlation can change as a result of 
changes in the materials, lift thickness, properties of underlying pavement layers, and 
inaccuracies caused by changes in operational procedures and device operating 
characteristics.  Periodic recalibration will obviously reduce the potential for inaccuracies 
due to bias; however, each recalibration requires significant coring and laboratory testing.  
More work is needed to assess the implications of bias on the practicality and reliability of 
the nuclear gauge for density acceptance. 

• Bias also tends to increase or decrease the payment risks in addition to that because of other 
variability discussed before. To assess the risk introduced because of bias alone another 
simulation program, BiasSim, was developed which is discussed in later section of this 
report.  

• Figure A1.8 illustrates the use of ILLISIM to determine possible operating ranges where a 
given level of payment can be obtained, under various levels of process and device standard 
deviation.  As process standard deviation or device standard deviation increases, the mean 
density must be closer to the middle of the specification range to achieve 100 percent pay, 
and even closer to the middle of the specification range to achieve full bonus, or 102 percent 
pay, as illustrated in this example.  Thus, if a contractor can decrease production variability 
and/or if the acceptance tests are run with more precision, full pay can be realized over a 
wider range of the mean density of construction. 
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b) Per-Job Risk Analysis 

 
 

Figure A1.6: Comparison of Risk Index for Contractor and Agency: Stratified-Average 
Method and Dual-Stratified Method vs. Mean Density (N = 15) 



 80

-5.0

0.0

5.0

10.0

15.0

20.0

89 90 91 92 93 94 95

Mean Density (%)

Nuclear Gage,
N = 15

Nuclear Gauge,
N = 9

Cores, N = 15

Cores, N = 9

 
a) Per-Lot Risk Analysis 

 
 

-5.0

0.0

5.0

10.0

89 90 91 92 93 94 95

Mean Density (%)

Nuclear Gage,
N = 15

Nuclear Gauge,
N = 9

Cores, N = 15

Cores, N = 9

 
b) Per-Job Risk Analysis 

 
 

Figure A1.7: Comparison of Risk Index for Nuclear Gauge and Core Density Measurements: 
Contractor Risk, Dual-Stratified Method (N = 9 and N = 15) 
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Figure A1.8: Use of ILLISIM to Determine Possible Operating Ranges as a Function of Payment 
Level and Combined Variability 
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Figure A1.9: Correlation between Nuclear Gauge and Cores Showing Divergent Confidence 
Intervals 
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APPENDIX A2 
 
PaySim 

 
The second simulation software PaySim was developed in order to: 
 

(a) Incorporate a new simulation model 
(b) Produce a more versatile simulation 
(c) Reduce simulation time 

 
The New Simulation Model 
 
Inputs: 
 p     – Production mean 
 2

pσ  - Production variance 
2
dσ  - Device variance 

n     - Number of measurements taken 
( )ul pp ,  - Lower and upper spec limits 
 
Given the measurements x1, x2, …. , xn we can calculate the average x  and standard 

deviations. The estimated percent within limits (PWL) is 
 

( )( ) ( )( )sxpsxpPWL lu // −Φ−−Φ=  
 

Where ( ) ∫
∞−

−=Φ
a

xea 2/2

2
1
π

 is the cumulative density 

function of the standard normal distribution.  
 
The expected PWL is equal to  
 

( ) ( ) ( ) ( ) ( )∫ ∫
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Where 222

pd σσσ +=  
 

( )xφ : Probability distribution function of N(0,1)  
( )ygn 1− : Probability distribution function of the chi-
square distribution with n-1 degrees of 
freedom.  
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This calculation requires evaluation of double integral, but can be done using a Monte 
Carlo method. A quick approximation for the expected value is as follows. 

 
Let  
 

( ) ,σppq uu −=      ( ) σppq ll −=  
 
The expected PWL can be approximated by  
 

( ) ( ) ( )lu qqPWLE Φ−Φ=1  
 
A more accurate approximation (especially for larger σ ) can be obtained with a second 

order adjustment. The second order approximation is 
 

( ) ( ) ( )lu qqPWLE 222 Φ−Φ=  
 
where 
 

( ) ( ) ( ) ( ) ( ) ( )125.05.0 3
2 −<−+Φ=Φ naIaaaaa φ  

 
The expected pay factor can be approximated given the expected PWL. 
 
 

Payment Risk Distribution 
 

The ideal PWL is  
 

( )( ) ( )( )plpu ppppPWL σσ −Φ−−Φ=0  
 

The risk is due to the difference between PWL and PWL0. The following Monte Carlo 
method can be used to give lower and upper limits of this risk 

 
(1) Generate zi (i = 1, 2, .., B) from N(0, 1) 
(2) Generate yi (i = 1, 2, .., B) from 2

1−nχ  
(3) For each i compute 
 

( ) ( )
⎟
⎟
⎠
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⎜
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⎝
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⎞
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σ

 

and 
 

( )caa i ,5055min2 +=  
(4) Use a2 as a random sample from the risk distribution 
and calculate target as follows 
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Target = min(55 + 50 PWLo,c 
 
Then average risk can be obtained by  

  
Average risk = mean(a2) – target 

 
Although this method also uses random numbers, it is not the same as ILLISIM. It uses the same 
set of random numbers when production or device variances are varied. The set of random 
numbers used will vary only with n. B= 5000 to 10000 give pretty accurate estimates of the 
average risk and its lower and upper confidence limits.  
 
 This model has been incorporated in the simulation named as PaySim. The original 
simulation engine was written in C and converted into a standalone executable program. This 
executable program requires an input file to get all the input parameter values. To make it more 
user-friendly Microsoft Excel was used as interface. The code for the interface was written in 
Visual Basic. This interface allows the user to enter input values easily and makes an input file. 
Then it runs the main simulation engine with the input file thus generated. The simulation 
program puts the results (output) in an output file. The interface code takes that output file and 
plots it in a convenient form for the user. Figures A2.1 (a) and (b) show a flow diagram 
representing the overall functioning of the simulation.  
 
Inputs for PaySim 
 

(1) Device variability 
(2) Production variability 
(3) Number of samples 
(4) Number of sublots 
(5) Analysis range for the quality characteristic being analyzed 
(6) Specification limits 
(7) Pay cap option (cap before averaging or after averaging) 
(8) Precision in simulation required (4 levels available) 
(9) Confidence Interval required 

 
Outputs from PaySim 
 

The simulation is fully automated to complete all the tasks and produce risk plots for the 
quality characteristic being analyzed and in the range as defined by the inputs. The list of inputs 
also gives an idea of the versatility of the simulation because practically any combination of 
input parameters can be chosen and analyzed. This is very helpful in doing sensitivity analysis. 
The output is in the form of risk plots showing the risk to the agency (State) in pay factor 
depending on the magnitudes of the input parameters. Figures A2.2 (a) to (k)  show a sensitivity 
analysis that was done using the PaySim simulation software.  

 
Multiple simulation runs of PaySim were performed to get a risk index for pay factors for a fixed 
value of combined standard deviation but with varying combination of device and production 
standard deviations. Combined standard deviations were obtained from field and plant results 
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from ERS demo projects in 2000 and 2001. The parameters analyzed were mix density, asphalt 
content and percent voids.  
 
Further details of values used in the simulation are given in Tables A2.1 and A2.2 
 
 
Table A2.1: Spec limits and number of samples used in the simulation with PaySim 
Parameter Target Lower Spec 

Limit 
Upper Spec 

Limit 
Number of 

Samples 
Mix Density (%Gmm) 94.25 91.5 97 50 
Asphalt Content (%) 5 4.67 5.33 15 
Voids (%) 4 2.65 5.35 15 
 
 
Table A2.2: Device and production standard deviations used with PaySim simulation 
Parameter 1deviceσ  1productionσ  2deviceσ  2productionσ  3deviceσ

 
3productionσ  

Mix Density 
(%Gmm) 

0.3 1.28 0.4 1.25 0.5 1.21 

AC (%) 0.04 0.13 0.075 0.12 0.11 0.09 
Voids (%)                0.15 0.67 0.20 0.66 0.25 0.64 

 
Figure A2.2 shows the plots generated in the sensitivity analysis. As can be seen from the values 
in table A2.2, combined variability is kept constant for any particular quality characteristic but 
the device variability and measurement variability are being varied.  



 87

Input all Parameters in MS 
Excel (Interface)

Run Main Simulation 
Engine (Executable)

Generate ASCII Input File 
Using VB

Use New Model to 
Generate Simulated 

Attribute Values

Generate Chi-Square 
Random Numbers

Generate Normal Random 
Numbers (Mean=0, Std = 1)

Calculate Ideal Percent 
Within Limits

Inputs:
Mean Attribute
Spec Limits
Prod. Std. Dev.

AB

PaySimPaySim

C D

Simulation Starts

Input all Parameters in MS 
Excel (Interface)

Run Main Simulation 
Engine (Executable)

Generate ASCII Input File 
Using VB

Use New Model to 
Generate Simulated 

Attribute Values

Generate Chi-Square 
Random Numbers

Generate Normal Random 
Numbers (Mean=0, Std = 1)

Calculate Ideal Percent 
Within Limits

Inputs:
Mean Attribute
Spec Limits
Prod. Std. Dev.

AABB

PaySimPaySim

CC DD

Simulation Starts

 
Key: MS – Microsoft; VB – Visual Basic; Std – Standard Deviation  

Figure A2.1a: Outline of working of PaySim 
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Figure A2.1b: PaySim Program Schematic
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 (a) : Risk for combinedσ  = 1.31, deviceσ  = 0.3, productionσ  = 1.28, N = 50,  Pay Cap = 103 
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(b) : Risk for combinedσ  = 1.31, deviceσ  = 0.4, productionσ  = 1.25, N = 50,  Pay Cap = 103 
Key: combinedσ - Combined variability;  deviceσ - Measurement or device variability; 

        productionσ - Production variability;  N- Number of samples; 
         Low CI- Lower limit of confidence interval;    High CI- Upper limit of confidence interval ; 
 

Figure A2.2 (a)-(b): Risk plots obtained from PaySim for different parameter levels 
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(c) : Risk for combinedσ  = 1.31, deviceσ  = 0.5, productionσ  = 1.21,  N = 50, Pay Cap = 103  
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 (d): Risk for combinedσ  = 0.14, deviceσ  = 0.04, productionσ  = 0.13, N = 15,Pay Cap = 103   
 

Figure A2.2 (c)-(d): Risk plots obtained from PaySim for different parameter levels 
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(e): Risk for combinedσ  = 0.14, deviceσ  = 0.075, productionσ  = 0.12, N = 15,Pay Cap = 103   
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(f): Risk for combinedσ  = 0.14, deviceσ  = 0.11, productionσ  = 0.09, N = 15,  Pay Cap = 103  
 

Figure A2.2 (e)-(f): Risk plots obtained from PaySim for different parameter levels 
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(g): Risk for combinedσ  = 0.69, deviceσ  = 0.15, productionσ  = 0.67, N = 15,Pay Cap = 103  

-10

-8

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8

Voids (%)

R
is

k 
in

 P
F 

(%
)

Mean Risk
Low CI
High CI

 
(h): Risk for combinedσ  = 0.69, deviceσ  = 0.20, productionσ  = 0.66, N = 15, Pay Cap = 103  
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(i): Risk for combinedσ  = 0.69, deviceσ  = 0.25, productionσ  = 0.64, N = 15, Pay Cap = 103  

Figure A2.2 (g)-(i): Risk plots obtained from PaySim for different parameter levels 
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(j): Risk for combinedσ  = 0.69, deviceσ  = 0.20, productionσ  = 0.66, N = 5,  Pay Cap = 103 
 

 
(k): Risk for combinedσ  = 0.14, deviceσ  = 0.075, productionσ  = 0.12,  N = 5,Pay Cap = 103 
 

Figure A2.2 (j)-(k): Risk plots obtained from PaySim for different parameter levels 
 

There are some important points that can be noticed from the plots presented here. 
 

(1) The magnitude of risk appears to be proportional to the ratio of device standard deviation 
to production standard deviation. For example, in risk plots for density (Figure A2.2) 
when this ratio increases from 0.23 to 0.41 maximum risk doubles from 0.8% to 1.6%.  
Similarly in the case of AC when the ratio goes up from 0.31 to 1.2 the risk increases 
from 2.4% to 6.8%. In the case of density, the risk increases from 2.3% to 2.8% with an 
increase in the ratio from 0.22% to 0.30%.  

(2) The values of combined standard deviations used in the analysis are close to those 
actually observed in the field. Based on this it can be said that density seems to have 
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much lesser risk in pay factor, in general, than Voids. AC is shown to have the maximum 
risk involved.  

(3) It is also noticeable that number of samples used for determining the pay factor exhibits 
an inverse relationship with the risks involved in payment. As the number of samples 
becomes smaller, the confidence interval on risk widens. A clear contrast can be seen 
between the plots for AC and voids with N= 15 and N=5. 
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APPENDIX A3 
 
BiasSim 
  

During highway construction, variations in the overall quality are unavoidable. 
Variability in as-constructed properties depend on production and measurement variability. In 
addition to variability around the actual value, a shift in measured properties, or bias, may also 
exist. The BiasSim program was developed to simulate the effects of measurements bias 
introduced by the contractor or agency.  

 
The main simulation engine relies on generating a normally distributed random number 

sequence with mean and standard deviation as estimated from observations of actual field project 
overall standard deviations in Illinois (ERS demonstration projects). In the first stage standard 
deviation reflects only the production-realted variability. This represents the as-constructed 
quality of the pavement before measurement variability is introduced.  

 
Measurement error due to variability of the instrument and/or test procedure is also 

expected to follow a normal distribution. Measurement error will be different for different 
instruments and different agencies (depending on differences in lab, operator etc.) Assuming that 
the mean of the error remains zero, a suitable estimate of standard deviation for measurement 
error was then used to generate two normally distributed error value sequences in the quality 
characteristic under consideration. These errors are then induced in the values generated earlier 
with certain mean and production variability. The resulting two sequences therefore simulate 
measurements taken by the contractor and that by the agency, assuming that there was no bias. 
Since the primary goal is to study the effect of bias, pay factor determined with these data could 
be considered as the reference pay factor for determining risk due to bias alone.  

 
The final step in data generation then, is to introduce bias in the contractor and agency 

measurement values. Bias values have been determined for some ERS demonstration projects. 
These values can be used for the study here. In essence bias signifies the shift in the 
measurement from the actual value. A later section will show how bias can be calculated from 
actual field data from any project. The data with bias therefore simulate the actual measurements 
that one would obtain in the field for the quality characteristic concerned. Pay factor determined 
from these data is the pay factor that the agency will arrive at if useds actual project data.  

 
Determining Bias Magnitude 
 
Table A3.1 shows the example of calculation of bias in a job. Suppose that 10 split samples were 
taken to determine the as-constructed density of a pavement in District 8. Next, the contractor 
and agency run each of the split samples in their own lab and the results shown in Table A3.1 are 
obtained. The difference between these two sets of readings is the estimate of the difference in 
density measurement between the contractor and the agency for the same material. Here it is 
assumed that density split samples are identical. This difference includes the measurement 
variability, which is always present. But measurement variability, being random in nature and 
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generally normally distributedn will have a mean close to zero. But if the mean of the differences 
is not close to zero, an estimate of bias is obtained.  
 
 

Table A3.1: Example bias calculation 

Job Contractor Agency Difference Mean of Diff.    
(Bias)

92.6 91.8 0.8
93.7 93.8 -0.2
93.9 93.9 0.0
92.8 93.4 -0.6
93.9 93.9 0.0
93.9 94.2 -0.3
92.8 91.8 1.0
95.5 95.1 0.3
94.2 94.5 -0.3
95.0 94.7 0.4

District 8 0.11

 
 

Without additional information, it is not possible to determine how much of the bias was 
contributed by the contractor and how much was contributed by the agency. That 
notwithstanding, BiasSim can be used to study the amount of risk that bias poses to the pay 
factor calculation.  
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Key: Std. Dev.- Standard Deviation;    Contr. – Contractor;     Meas – Measurement;     Prod. – Production;     N – No. of Samples 

 
Figure A3.1a: BiasSim Program Flowchart (1 of 2)
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Figure A3.1b: BiasSim Program Flowchart (2 of 2)
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Inputs for BiasSim 
 

The following parameters can be studied in BiasSim: 
 

(1) Quality Characteristic to be analyzed 
(2) Production variability 
(3) Device variability for contractor (multiple inputs possible) 
(4) Device variability for agency (multiple inputs possible) 
(5) Sample size per job 
(6) Number of cases to be analyzed (for batch processing) 
(7) Range of quality characteristic values for analysis 
(8) Specification limits  
(9) Comparison tolerances 
(10) Precision desired in simulation 
(11) Confidence interval 

 
 

PF Risk Plot
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Key: Cont. – Contractor; Low CI – Lower Limit of Confidence Interval; High CI – Upper Limit of Confidence 
Interval 

 
Figure A3.2: Typical risk plot obtained from BiasSim 
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Output from BiasSim 
 

BiasSim was developed to perform the risk analysis for different magnitudes and signs of 
bias in the measurements taken by the contractor and the agency in different situations. The 
outputs from the simulation, therefore, are plots showing risk in pay factor (%PF) for a given set 
of parameters and in the range of analysis desired. In case of batch processing, the simulation 
runs all the cases together and then generates the plots. The simulator also has a batch processing 
mode wherein all the cases in the batch are executed before the generation of the various plots. 
The output data and the plots are stored in a separate file designated by the user. Batch 
processing allows for multiple sets of contractor and agency bias to be simulated. But the other 
parameters remain fixed for any single run. Figure A3.2 shows a typical plot generated by 
BiasSim. High CI and Low CI refer to the upper and lower limit of confidence interval, 
respectively.  
 
 
Sensitivity Analysis 
 

A senstitivity analysis using BiasSim is now presented.  Risk associated in the 
determination of pay factor for voids in plant produced HMA is studied.  Table A3.2 shows the 
combination of bias values that were used in this sensitivity analysis. 
 

Table A3.2: Bias values used in the sensitivity analysis 
Contractor Agency Contractor Agency

0.00 0.00
-0.42 0.00 0.00 -0.42
-0.21 0.00 0.00 -0.21
0.42 0.00 0.00 0.42
0.21 0.00 0.00 0.21
-0.21 +0.21 +0.21 -0.21
-0.42 +0.42 +0.42 -0.42  

 
Figures A3.3-A3.6 present the results of the sensitivity analysis conducted using BiasSim. The 
three lines show mean risk (solid line), while the dashed lines show the limits of the 90% 
confidence intervals. Some important points that can be derived from these results are: 
 

• Plot 1 (Figure A3.3) shows the risk when both contractor and agency bias are zero. This 
is a verification case, showing that BiasSim returns a result of zero risk when bias is input 
as zero.  

 
• Plot 2 shows the risks when contractor bias is –0.42, i.e. when the contractor’s void 

measurements are consistently 0.42% lower than the actual value, while the agency 
measures the correct value. Risk due to bias varies as void level increases from 1% to 
7%. The maximum mean risk is 10% for both the contractor and agency depending on the 
void value. Since the difference between the mean agency voids and mean contractor 
voids is well within the prescribed comparison tolerance, their values will usually pass 
the comparison and therefore, the contractor’s voids will be used for pay calculation. 
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Since the contractor is measuring less than actual value, the burden of risk falls on the 
contractor for lower void levels.  For higher void levels, the risk shifts to the agency.  

 
• When the contractor bias is zero but agency bias is –0.42 (reverse of the last case) (plot 3) 

they will still compare well most of the times because the comparison tolerance is 1%. So, 
contractor’s values will be used most of the time, which do not have any bias, and therefore 
the risk is zero all through the range of voids analyzed.  

• When the contractor has positive high bias (plot 5) the trend is reverse of that observed 
for the high negative bias.  

• In the case when the contractor has high negative bias and the agency has high positive 
bias (plot 10) the probability of a successful QA comparison is smaller than the case 
shown in plots 2 and 6.  As a result, the probability of agency voids being used in the pay 
calculation is higher, although the likelihood is still under 50%. Because in some cases 
the contractor voids are used (which are less than the actual value) and sometimes agency 
voids are used (which are higher than the actual voids), the overall mean risk is smaller.  
However, the 90% confidence interval is much broader than that observed in plots 2 and 
6.  Plot 12 shows that confidence intervals narrow when the bias magnitudes are halved, 
simimar to that observed in plots 4 and 8. 

 
 
 
 
The source code for BiasSim, which is written in MatLab, is provided in Appendix B3. 
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Figure A3.3: BiasSim risk plot from sensitivity analysis
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Key: Contr. - Contractor 

Figure A3.4: BiasSim risk plot from sensitivity analysis 
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Figure A3.5: BiasSim risk plot from sensitivity analysis 
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Figure A3.6: BiasSim risk plot from sensitivity analysis 
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APPENDIX B1 
 
Source Code for ILLISIM 
 
Dim lotavg(10) As Double 
Dim lotsig(10) As Double 
Dim lotpwl(10) As Double 
Dim lotpay(10) As Double 
Dim lotpaydiff(10) As Double 
Dim lotval(15) As Double 
Dim subavg(3) As Double 
Dim Dev(5) As Single 
Dim Devicestd(15) As Single 
 
Function NormVal(Avg, sigma1, y) 
 
NormVal = (1 / (sigma1 * (2 * 3.1415926) ^ 0.5)) * (2.71828 ^ -(((y - Avg) ^ 2) / (2 * sigma1 ^ 
2))) 
 
End Function 
 
Sub IntroPage() 
 
Sheets("Intro").Activate 
Range("A1").Select 
 
End Sub 
 
Sub InputData() 
 
Sheets("RunData").Activate 
Range("A1").Select 
 
End Sub 
 
Sub RunSim() 
 
Workbooks("ILLI-SIM2.xls").Sheets("RunData").Activate 
simresfilenum = Cells(17, 3) 
 
Workbooks.Open Filename:="C:\ILLISIM\sim results template.xls" 
ActiveWorkbook.SaveAs Filename:="C:\Sim Results\sim results" & simresfilenum & ".xls" 
 
Workbooks("ILLI-SIM2.xls").Sheets("Intro").Activate 
 
Call NewBaseline 
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Call Yderive 
 
Workbooks("ILLI-SIM2.xls").Sheets("RunData").Activate 
Cells(17, 3) = Cells(17, 3) + 1 
 
Sheets("Intro").Activate 
 
End Sub 
 
Sub Yderive() 
 
NumRuns = Worksheets("RunData").Range("C16") 
 
For q = 1 To NumRuns 
 
Sheets("ILLISIM").Activate 
Range("B22:HD35").Clear 
 
If q = 1 Then 
    Sheets("RunData").Select 
      Range(Cells(3, 4), Cells(14, 4)).Copy 
    Sheets("ILLISIM").Activate 
      Range("B1:B12").Select 
    Selection.PasteSpecial Paste:=xlValues 
    If Cells(3, 2) = 1 Then Cells(3, 2) = "strat" 
    If Cells(3, 2) = 2 Then Cells(3, 2) = "avg" 
    Cells(13, 2) = Sheets("RunData").Range("C18") 
 
    Sheets("RunData").Activate 
      Range(Cells(20, 4), Cells(23, 4)).Select 
    Selection.Copy 
    Sheets("ILLISIM").Activate 
      Range("K9:K12").Select 
    Selection.PasteSpecial Paste:=xlValues 
End If 
If q = 6 Then 
    Sheets("RunData").Select 
      Range(Cells(3, 5), Cells(14, 5)).Copy 
    Sheets("ILLISIM").Activate 
      Range("B1:B12").Select 
    Selection.PasteSpecial Paste:=xlValues 
    If Cells(3, 2) = 1 Then Cells(3, 2) = "strat" 
    If Cells(3, 2) = 2 Then Cells(3, 2) = "avg" 
    Cells(13, 2) = Sheets("RunData").Range("C18") 
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    Sheets("RunData").Activate 
      Range(Cells(20, 5), Cells(23, 5)).Select 
    Selection.Copy 
    Sheets("ILLISIM").Activate 
      Range("K9:K12").Select 
    Selection.PasteSpecial Paste:=xlValues 
End If 
If q = 11 Then 
    Sheets("RunData").Select 
      Range(Cells(3, 6), Cells(14, 6)).Copy 
    Sheets("ILLISIM").Activate 
      Range("B1:B12").Select 
    Selection.PasteSpecial Paste:=xlValues 
    If Cells(3, 2) = 1 Then Cells(3, 2) = "strat" 
    If Cells(3, 2) = 2 Then Cells(3, 2) = "avg" 
    Cells(13, 2) = Sheets("RunData").Range("C18") 
 
    Sheets("RunData").Activate 
      Range(Cells(20, 6), Cells(23, 6)).Select 
    Selection.Copy 
    Sheets("ILLISIM").Activate 
      Range("K9:K12").Select 
    Selection.PasteSpecial Paste:=xlValues 
End If 
If q = 16 Then 
    Sheets("RunData").Select 
      Range(Cells(3, 7), Cells(14, 7)).Copy 
    Sheets("ILLISIM").Activate 
      Range("B1:B12").Select 
    Selection.PasteSpecial Paste:=xlValues 
    If Cells(3, 2) = 1 Then Cells(3, 2) = "strat" 
    If Cells(3, 2) = 2 Then Cells(3, 2) = "avg" 
    Cells(13, 2) = Sheets("RunData").Range("C18") 
 
    Sheets("RunData").Activate 
      Range(Cells(20, 7), Cells(23, 7)).Select 
    Selection.Copy 
    Sheets("ILLISIM").Activate 
      Range("K9:K12").Select 
    Selection.PasteSpecial Paste:=xlValues 
End If 
                                                                                     
Cells(9, 8) = q 
 
MeanValue = Worksheets("ILLISIM").Range("B1") 
Processsig = Worksheets("ILLISIM").Range("B2") 
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Method = Worksheets("ILLISIM").Range("B3") 
Devsig = Worksheets("ILLISIM").Range("B4") 
NumRead = Worksheets("ILLISIM").Range("B5") 
NumSubs = Worksheets("ILLISIM").Range("B6") 
NumLots = Worksheets("ILLISIM").Range("B7") 
NumJobs = Worksheets("ILLISIM").Range("B8") 
USL = Worksheets("ILLISIM").Range("B9") 
LSL = Worksheets("ILLISIM").Range("B10") 
pfconst = Worksheets("ILLISIM").Range("B11") 
pfslope = Worksheets("ILLISIM").Range("B12") 
char = Worksheets("ILLISIM").Range("B13") 
 
corravg = Worksheets("ILLISIM").Range("K9") 
corrsig = Worksheets("ILLISIM").Range("K10") 
corrpwl = Worksheets("ILLISIM").Range("K11") 
corrlotpay = Worksheets("ILLISIM").Range("K12") 
corrjobpay = Worksheets("ILLISIM").Range("K12") 
If corrjobpay > 102 Then corrjobpay = 102 
     
For h = 1 To NumJobs 
 
Cells(10, 8) = h 
     
For J = 1 To NumLots 
 
randgen 
randgen2 
 
Sum = 0 
 
For i = 1 To NumRead 
     
'Calculates initial characteristic value from process deviation 
    Avg = MeanValue 
    sigma = Processsig 
    Yfin = 100 
    Area = 0 
    inc = 0.05 
     
   
    For Y1 = (Avg - 4 * sigma) To Yfin Step inc 
 
        Y2 = Y1 + inc 
        X1 = NormVal(Avg, sigma, Y1) 
        X2 = NormVal(Avg, sigma, Y2) 
        A = inc * (X1 + X2) / 2 
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        Area = Area + A 
        If Area >= Cells(i + 3, 4) Then GoTo 10 
        
    Next Y1 
 
10  y = (Y1 + Y2) / 2 
    lotval(i) = y 
 
'Considering measurement device deviation 
    If Devsig = "Nuke" Then 
        Devicestd(i) = 0.006003 * (lotval(i)) ^ 2 - 1.116363 * (lotval(i)) + 52.616 
    ElseIf IsNumeric(Devsig) Then 
        Devicestd(i) = Devsig 
    Else: MsgBox "Cell B3 must read 'Nuke' or '#.##'.", vbOKCancel, "Invalid Input" 
    End If 
     
'Calculates "final" density measurement 
    Yfin = 100 
    Area = 0 
    inc = 0.05 
 
    For Y3 = (y - 4 * Devicestd(i)) To Yfin Step inc 
 
        Y4 = Y3 + inc 
        X3 = NormVal(y, Devicestd(i), Y3) 
        X4 = NormVal(y, Devicestd(i), Y4) 
        A = inc * (X3 + X4) / 2 
        Area = Area + A 
        If Area >= Cells(i + 3, 5) Then GoTo 20 
        
    Next Y3 
 
20 YF = (Y3 + Y4) / 2 
 
   lotval(i) = YF 
    
   Sum = Sum + YF 
 
Next i 
 
'Caculates lot average and std based on "strat" or "avg" method 
If Method = "strat" Then 
    lotavg(J) = Sum / NumRead 
    SumSquare = 0 
    For n = 1 To NumRead 
        s = (lotval(n) - lotavg(J)) ^ 2 
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        SumSquare = SumSquare + s 
    Next n 
    lotsig(J) = (SumSquare / (NumRead - 1)) ^ 0.5 
 
ElseIf Method = "avg" Then 
    SumLot = 0 
    For n = 1 To NumSubs 
        SumSub = 0 
        For NN = 1 To CInt(NumRead / NumSubs) 
            Num = NN + 5 * (n - 1) 
            SumSub = SumSub + lotval(Num) 
        Next NN 
        subavg(n) = SumSub / CInt(NumRead / NumSubs) 
        SumLot = SumLot + subavg(n) 
    Next n 
    lotavg(J) = SumLot / NumSubs 
    SumSquare = 0 
    For p = 1 To NumSubs 
        s = (subavg(p) - lotavg(J)) ^ 2 
        SumSquare = SumSquare + s 
    Next p 
    lotsig(J) = (SumSquare / (NumSubs - 1)) ^ 0.5 
 
Else: MsgBox "Cell B3 must read 'strat' or 'avg'.", vbOKCancel, "Invalid Input" 
 
End If 
 
'Calculates PWL per Lot 
 
Avg = lotavg(J) 
sigma = lotsig(J) 
 
If sigma < 0.05 Then sigma = 0.05 
   
lotpwl(J) = PWL(Avg, sigma, NumRead, USL, LSL) 
 
'Calculates Pay Factor and PF Difference 
 
lotpay(J) = pfconst + pfslope * lotpwl(J) 
lotpaydiff(J) = lotpay(J) - corrlotpay 
     
Next J 
 
lotpaysum = 0 
maxoverpay = 0 
maxunderpay = 0 
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Cells(22, 10 * (h - 1) + 2) = h 
 
'Reports per-Lot Numbers 
For K = 1 To NumLots 
 
Cells(23, 10 * (h - 1) + K + 1) = lotavg(K) 
Cells(24, 10 * (h - 1) + K + 1) = lotsig(K) 
Cells(25, 10 * (h - 1) + K + 1) = lotpwl(K) 
Cells(26, 10 * (h - 1) + K + 1) = lotpay(K) 
Cells(27, 10 * (h - 1) + K + 1) = lotpaydiff(K) 
 
lotpaysum = lotpaysum + lotpay(K) 
 
If lotpaydiff(K) > maxoverpay Then maxoverpay = lotpaydiff(K) 
If lotpaydiff(K) < maxunderpay Then maxunderpay = lotpaydiff(K) 
 
Next K 
 
'Reports per-Job Numbers 
jobpay = lotpaysum / NumLots 
 
If jobpay <= 102 Then 
    jobpay = jobpay 
    Else: jobpay = 102 
End If 
 
jobpaydiff = jobpay - corrjobpay 
 
Cells(30, h + 1) = h 
Cells(31, h + 1) = jobpay 
Cells(32, h + 1) = corrjobpay 
Cells(33, h + 1) = jobpaydiff 
Cells(34, h + 1) = maxoverpay 
Cells(35, h + 1) = maxunderpay 
 
Next h 
 
SaveResults 
 
Next q 
 
ReduceResults 
 
End Sub 
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Sub NewBaseline() 
 
Sheets("Baseline").Visible = True 
 
For KK = 1 To 4 
 
Sheets("RunData").Select 
Range(Cells(3, 3 + KK), Cells(14, 3 + KK)).Copy 
 
Sheets("ILLISIM").Activate 
Range("B1:B12").Select 
    Selection.PasteSpecial Paste:=xlValues 
If Cells(3, 2) = 1 Then Cells(3, 2) = "strat" 
If Cells(3, 2) = 2 Then Cells(3, 2) = "avg" 
Cells(13, 2) = Sheets("RunData").Range("C18") 
 
baseline 
 
Sheets("ILLISIM").Activate 
Range("K9:K12").Select 
    Selection.Copy 
Sheets("RunData").Activate 
Cells(20, 3 + KK).Select 
    Selection.PasteSpecial Paste:=xlValues 
Next KK 
 
Sheets("ILLISIM").Activate 
 
Sheets("Baseline").Visible = False 
 
End Sub 
 
 
Dim storebook As String 
Function PWL(X, y, z, USL, LSL) 
    Qu = 0# 
    Ql = 0# 
     
    If z = 3 Then 
    ' 3 samples 
    
  Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
     
    If Qu > -1.16 Then 
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        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 + 1.2444 * (Abs(Qu)) ^ 4 - 6.3854 * (Abs(Qu)) ^ 3 + 0.8538 * 
(Abs(Qu)) ^ 2 + 38.302 * (Abs(Qu))) 
            Else: 
            If Qu < 1.16 Then 
                Pdu = 1 * (50 + 1.2444 * (Qu) ^ 4 - 6.3854 * (Qu) ^ 3 + 0.8538 * (Qu) ^ 2 + 38.302 * 
(Qu)) 
                Else: Pdu = 0 
            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -1.16 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 + 1.2444 * (Abs(Ql)) ^ 4 - 6.3854 * (Abs(Ql)) ^ 3 + 0.8538 * 
(Abs(Ql)) ^ 2 + 38.302 * (Abs(Ql))) 
            Else: 
            If Ql < 1.16 Then 
                Pdl = 1 * (50 + 1.2444 * (Ql) ^ 4 - 6.3854 * (Ql) ^ 3 + 0.8538 * (Ql) ^ 2 + 38.302 * 
(Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
     
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
         
    End If 
     
     
    If z = 4 Then 
      ' 4 samples 
  
       
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
     
    If Qu > -1.5 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 - 33.333 * (Abs(Qu))) 
            Else: 
            If Qu < 1.5 Then 
                Pdu = 1 * (50 - 33.333 * (Qu)) 
                Else: Pdu = 0 
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            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
     
    If Ql > -1.5 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 - 33.333 * (Abs(Ql))) 
            Else: 
            If Ql < 1.5 Then 
                Pdl = 1 * (50 - 33.333 * (Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
     
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
               
    End If 
     
     
    If z = 5 Then 
      ' 5 samples 
 
     
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
    
    If Qu > -1.8 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 + 3.3742 * (Abs(Qu)) ^ 3 - 2.4068 * (Abs(Qu)) ^ 2 - 34.691 * 
(Abs(Qu))) 
            Else: 
            If Qu < 1.8 Then 
                Pdu = 1 * (50 + 3.3742 * (Qu) ^ 3 - 2.4068 * (Qu) ^ 2 - 34.691 * (Qu)) 
                Else: Pdu = 0 
            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -1.8 Then 
        If Ql < 0 Then 
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            Pdl = 100 - 1 * (50 + 3.3742 * (Abs(Ql)) ^ 3 - 2.4068 * (Abs(Ql)) ^ 2 - 34.691 * 
(Abs(Ql))) 
            Else: 
            If Ql < 1.8 Then 
                Pdl = 1 * (50 + 3.3742 * (Ql) ^ 3 - 2.4068 * (Ql) ^ 2 - 34.691 * (Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
     
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
    End If 
     
    If z = 6 Then 
      ' 6 samples 
     
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
     
    If Qu > -2.03 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 + 2.9406 * (Abs(Qu)) ^ 3 - 0.0022 * (Abs(Qu)) ^ 2 - 36.742 * 
(Abs(Qu))) 
            Else: 
            If Qu < 2.03 Then 
                Pdu = 1 * (50 + 2.9406 * (Qu) ^ 3 - 0.0022 * (Qu) ^ 2 - 36.742 * (Qu)) 
                Else: Pdu = 0 
            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -2.03 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 + 2.9406 * (Abs(Ql)) ^ 3 - 0.0022 * (Abs(Ql)) ^ 2 - 36.742 * 
(Abs(Ql))) 
            Else: 
            If Ql < 2.03 Then 
                Pdl = 1 * (50 + 2.9406 * (Ql) ^ 3 - 0.0022 * (Ql) ^ 2 - 36.742 * (Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
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    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
    End If 
     
     
    If z = 7 Then 
      ' 7 samples 
     
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
     
    If Qu > -2.23 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 - 0.815 * (Abs(Qu)) ^ 4 + 5.4299 * (Abs(Qu)) ^ 3 - 1.475 * 
(Abs(Qu)) ^ 2 - 37.051 * (Abs(Qu))) 
            Else: 
            If Qu < 2.23 Then 
                Pdu = 1 * (50 - 0.815 * (Qu) ^ 4 + 5.4299 * (Qu) ^ 3 - 1.475 * (Qu) ^ 2 - 37.051 * 
(Qu)) 
                Else: Pdu = 0 
            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -2.23 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 - 0.815 * (Abs(Ql)) ^ 4 + 5.4299 * (Abs(Ql)) ^ 3 - 1.475 * (Abs(Ql)) 
^ 2 - 37.051 * (Abs(Ql))) 
            Else: 
            If Ql < 2.23 Then 
                Pdl = 1 * (50 - 0.815 * (Ql) ^ 4 + 5.4299 * (Ql) ^ 3 - 1.475 * (Ql) ^ 2 - 37.051 * (Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
     
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
    End If 
     
     
    If z = 8 Then 
      ' 8 samples 
     
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
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    If Qu > -2.39 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 - 1.155 * (Abs(Qu)) ^ 4 + 6.4174 * (Abs(Qu)) ^ 3 - 1.8227 * 
(Abs(Qu)) ^ 2 - 37.415 * (Abs(Qu))) 
            Else: 
            If Qu < 2.39 Then 
                Pdu = 1 * (50 - 1.155 * (Qu) ^ 4 + 6.4174 * (Qu) ^ 3 - 1.8227 * (Qu) ^ 2 - 37.415 * 
(Qu)) 
                Else: Pdu = 0 
            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -2.39 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 - 1.155 * (Abs(Ql)) ^ 4 + 6.4174 * (Abs(Ql)) ^ 3 - 1.8227 * (Abs(Ql)) 
^ 2 - 37.415 * (Abs(Ql))) 
            Else: 
            If Ql < 2.39 Then 
                Pdl = 1 * (50 - 1.155 * (Ql) ^ 4 + 6.4174 * (Ql) ^ 3 - 1.8227 * (Ql) ^ 2 - 37.415 * (Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
    End If 
     
     
    If z = 9 Then 
      ' 9 samples 
     
    Qu = (USL - X) / y 
    Ql = (X - LSL) / y 
     
    If Qu > -2.53 Then 
        If Qu < 0 Then 
            Pdu = 100 - 1 * (50 - 1.2613 * (Abs(Qu)) ^ 4 + 6.6228 * (Abs(Qu)) ^ 3 - 1.5375 * 
(Abs(Qu)) ^ 2 - 37.832 * (Abs(Qu))) 
            Else: 
            If Qu < 2.53 Then 
                Pdu = 1 * (50 - 1.2613 * (Qu) ^ 4 + 6.6228 * (Qu) ^ 3 - 1.5375 * (Qu) ^ 2 - 37.832 * 
(Qu)) 
                Else: Pdu = 0 
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            End If 
        End If 
    Else: Pdu = 100 
    End If 
     
    If Ql > -2.53 Then 
        If Ql < 0 Then 
            Pdl = 100 - 1 * (50 - 1.2613 * (Abs(Ql)) ^ 4 + 6.6228 * (Abs(Ql)) ^ 3 - 1.5375 * 
(Abs(Ql)) ^ 2 - 37.832 * (Abs(Ql))) 
            Else: 
            If Ql < 2.53 Then 
                Pdl = 1 * (50 - 1.2613 * (Ql) ^ 4 + 6.6228 * (Ql) ^ 3 - 1.5375 * (Ql) ^ 2 - 37.832 * 
(Ql)) 
                Else: Pdl = 0 
            End If 
        End If 
    Else: Pdl = 100 
    End If 
    PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
         
    End If 
         
    If z >= 10 Then 
          ' 10 samples 
        Qu = (USL - X) / y 
        Ql = (X - LSL) / y 
        If Qu > -2.65 Then 
            If Qu < 0 Then 
                Pdu = 100 - 1 * (50 - 1.2579 * (Abs(Qu)) ^ 4 + 6.4455 * (Abs(Qu)) ^ 3 - 0.934 * 
(Abs(Qu)) ^ 2 - 38.272 * (Abs(Qu))) 
                Else: 
                If Qu < 2.65 Then 
                    Pdu = 1 * (50 - 1.2579 * (Qu) ^ 4 + 6.4455 * (Qu) ^ 3 - 0.934 * (Qu) ^ 2 - 38.272 * 
(Qu)) 
                    Else: Pdu = 0 
                End If 
            End If 
        Else: Pdu = 100 
        End If 
     
        If Ql > -2.65 Then 
            If Ql < 0 Then 
                Pdl = 100 - 1 * (50 - 1.2579 * (Abs(Ql)) ^ 4 + 6.4455 * (Abs(Ql)) ^ 3 - 0.934 * 
(Abs(Ql)) ^ 2 - 38.272 * (Abs(Ql))) 
                Else: 
                If Ql < 2.65 Then 
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                    Pdl = 1 * (50 - 1.2579 * (Ql) ^ 4 + 6.4455 * (Ql) ^ 3 - 0.934 * (Ql) ^ 2 - 38.272 * 
(Ql)) 
                    Else: Pdl = 0 
                End If 
            End If 
        Else: Pdl = 100 
        End If 
 
PWLtot = (100 - Pdu) + (100 - Pdl) - 100 
    End If 
     
'Take care of very slight fitting error (<0.1 error) 
If PWLtot < 0 Then PWLtot = 0 
If PWLtot > 100 Then PWLtot = 100 
 
PWL = PWLtot 
 
End Function 
Sub SaveResults() 
 
SheetNum = Worksheets("ILLISIM").Range("H9") 
storesheet = "Sheet" & SheetNum 
simresfilenum = Worksheets("RunData").Range("C17").Value 
storebook = "sim results" & simresfilenum & ".xls" 
 
Workbooks("ILLI-SIM2.xls").Worksheets("ILLISIM").Range("A1:B13").Copy 
 
Workbooks(storebook).Worksheets(storesheet).Activate 
Range("B3").Select 
    Selection.PasteSpecial Paste:=xlValues 
 
Workbooks("ILLI-SIM2.xls").Worksheets("ILLISIM").Range("J9:K12").Copy 
 
Workbooks(storebook).Worksheets(storesheet).Activate 
Range("B15").Select 
    Selection.PasteSpecial Paste:=xlValues 
 
Workbooks("ILLI-SIM2.xls").Worksheets("ILLISIM").Range("A29:U35").Copy 
 
Workbooks(storebook).Sheets(storesheet).Range("B23").Activate 
    Selection.PasteSpecial Paste:=xlValues 
     
Workbooks("ILLI-SIM2.xls").Worksheets("ILLISIM").Activate 
Range("A21:GS27").Select 
Selection.Copy 
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Workbooks(storebook).Worksheets(storesheet).Activate 
   Range("D32").Select 
   Selection.PasteSpecial Paste:=xlValues 
     
Workbooks("ILLI-SIM2.xls").Activate 
Sheets("ILLISIM").Select 
Range("A1").Select 
     
End Sub 
 
Sub ReduceResults() 
 
simresfilenum = Workbooks("ILLI-SIM2.xls").Worksheets("RunData").Range("C17").Value 
reducebook = "sim results" & simresfilenum & ".xls" 
 
Workbooks(reducebook).Activate 
 
ReduceDataPWL 
 
End Sub 
 
Sub ReduceDataPWL() 
 
'************************* 
'BY LOT and BY JOB 
'************************* 
 
For J = 1 To 4 
  For K = 1 To 5 
  
KK = (J - 1) * 5 + K 
MM = (K - 1) * 400 
  
'Assign Fixed (master) and Variable sheet names 
Shnmf = "Sheet" & (J - 1) * 5 + 2 
Shnmv = "Sheet" & KK 
  
Sheets(Shnmv).Activate 
 
Rows("52:2100").Select 
Selection.ClearContents 
 
Cells(53, 10) = "Average LOT PWL-sheet" 
Cells(54, 10).Activate 
ActiveCell.FormulaR1C1 = "=AVERAGE(R[-18]C[-5]:R[-18]C[194])" 
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For n = 1 To 20 
    Cells(40, 10 * (n - 1) + 5).Activate 
    ActiveCell.FormulaR1C1 = "=AVERAGE(R[-4]C[0]:R[-4]C[9])" 
Next n 
 
Cells(53, 20) = "Average JOB PWL-sheet" 
Cells(54, 20).Activate 
ActiveCell.FormulaR1C1 = "=AVERAGE(R[-14]C[-15]:R[-14]C[184])" 
 
Next K 
 
Sheets(Shnmf).Activate 
  
Cells(52, 4) = "PER LOT Analysis" 
Cells(53, 5) = "Over PWL" 
Cells(53, 6) = "Under PWL" 
Cells(54, 4) = "Max" 
Cells(55, 4) = "StdDev" 
Cells(53, 8) = "Overall Avg LOT PWL" 
Cells(54, 8) = (Sheets("Sheet" & (J - 1) * 5 + 1).Cells(54, 10) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 2).Cells(54, 10) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 3).Cells(54, 10) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 4).Cells(54, 10) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 5).Cells(54, 10)) / 5 
 
Cells(52, 14) = "PER JOB Analysis" 
Cells(53, 15) = "Over PWL" 
Cells(53, 16) = "Under PWL" 
Cells(54, 14) = "Max" 
Cells(55, 14) = "StdDev" 
Cells(53, 18) = "Overall Avg JOB PWL" 
Cells(54, 18) = (Sheets("Sheet" & (J - 1) * 5 + 1).Cells(54, 20) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 2).Cells(54, 20) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 3).Cells(54, 20) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 4).Cells(54, 20) + _ 
     Sheets("Sheet" & (J - 1) * 5 + 5).Cells(54, 20)) / 5 
  
Next J 
 
For J = 1 To 4 
  
For K = 1 To 5 
  
KK = (J - 1) * 5 + K 
MM = (K - 1) * 400 
NN = (K - 1) * 40 
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'Assign Fixed (master) and Variable sheet names 
Shnmf = "Sheet" & (J - 1) * 5 + 2 
Shnmv = "Sheet" & KK 
   
Sheets(Shnmv).Activate 
ActiveWindow.LargeScroll Down:=1 
  
For i = 1 To 200 
   If Sheets(Shnmv).Cells(36, i + 4) >= Sheets(Shnmf).Cells(54, 8) _ 
    Then Sheets(Shnmf).Cells(MM + 55 + i, 5) = _ 
    Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8) 
   If Sheets(Shnmv).Cells(36, i + 4) >= Sheets(Shnmf).Cells(54, 8) _ 
    Then Sheets(Shnmf).Cells(MM + 55 + i + 200, 5) = _ 
    (Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8)) * -1# 
   If Sheets(Shnmv).Cells(36, i + 4) < Sheets(Shnmf).Cells(54, 8) _ 
    Then Sheets(Shnmf).Cells(MM + 55 + i, 6) = _ 
    Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8) 
   If Sheets(Shnmv).Cells(36, i + 4) < Sheets(Shnmf).Cells(54, 8) _ 
    Then Sheets(Shnmf).Cells(MM + 55 + i + 200, 6) = _ 
    (Sheets(Shnmv).Cells(36, i + 4) - Sheets(Shnmf).Cells(54, 8)) * -1# 
Next i 
  
For ii = 1 To 20 
   If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) >= Sheets(Shnmf).Cells(54, 18) _ 
    Then Sheets(Shnmf).Cells(NN + 55 + ii, 15) = _ 
    Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18) 
   If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) >= Sheets(Shnmf).Cells(54, 18) _ 
    Then Sheets(Shnmf).Cells(NN + 55 + ii + 20, 15) = _ 
    (Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)) * -1# 
   If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) < Sheets(Shnmf).Cells(54, 18) _ 
    Then Sheets(Shnmf).Cells(NN + 55 + ii, 16) = _ 
    Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18) 
   If Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) < Sheets(Shnmf).Cells(54, 18) _ 
    Then Sheets(Shnmf).Cells(NN + 55 + ii + 20, 16) = _ 
    (Sheets(Shnmv).Cells(40, 10 * (ii - 1) + 5) - Sheets(Shnmf).Cells(54, 18)) * -1# 
Next ii 
  
Next K 
 
Sheets(Shnmf).Activate 
 
Cells(55, 5).Activate 
ActiveCell.FormulaR1C1 = "=STDEV(R[1]C:R[2000]C)" 
     
Cells(55, 6).Activate 
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ActiveCell.FormulaR1C1 = "=STDEV(R[1]C:R[2000]C)*-1." 
 
Cells(54, 5).Activate 
ActiveCell.FormulaR1C1 = "=Max(R[2]C:R[2001]C)" 
 
Cells(54, 6).Activate 
ActiveCell.FormulaR1C1 = "=Min(R[2]C:R[2001]C)" 
 
Cells(55, 15).Activate 
ActiveCell.FormulaR1C1 = "=STDEV(R[1]C:R[200]C)" 
     
Cells(55, 16).Activate 
ActiveCell.FormulaR1C1 = "=STDEV(R[1]C:R[200]C)*-1." 
 
Cells(54, 15).Activate 
ActiveCell.FormulaR1C1 = "=Max(R[2]C:R[201]C)" 
 
Cells(54, 16).Activate 
ActiveCell.FormulaR1C1 = "=Min(R[2]C:R[201]C)" 
 
Next J 
 
End Sub
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APPENDIX B2 
Source Code for PaySim 
 
 
(1) Source code for the MS Excel interface (code in Visual Basic) 
 
Sub makeinp() 
' 
' makeinp1 Macro 
' Macro recorded 8/1/2001 by Anshu Manik 
' 
 
    Sheets("Home").Select 
    precision = Range("ae8").Value 
    cap = Range("af8").Value 
    Name = Range("F4").Value 
    file = Name & "\input.csv" 
    Sheets("Input").Select 
    If precision = "Crude" Then prec = 0 
    If precision = "Low" Then prec = 1 
    If precision = "Medium" Then prec = 2 
    If precision = "High" Then prec = 3 
    Range("A11").Value = prec 
    If cap = "Before" Then capop = 0 
    If cap = "After" Then capop = 1 
    Range("a12").Value = capop 
    Range("A1:A13").Select 
    Selection.Copy 
    Sheets("Home").Select 
    Range("A1").Select 
    Workbooks.Add 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
    Application.CutCopyMode = False 
    ActiveWorkbook.SaveAs Filename:=file, _ 
        FileFormat:=xlCSV, CreateBackup:=False 
    ActiveWorkbook.SaveAs Filename:=file, _ 
        FileFormat:=xlCSV, CreateBackup:=False 
    ActiveWindow.Close 
    Range("A1").Select 
    exec = Name & "\paysim.exe" 
    retval = Shell(exec, vbNormalNoFocus) 
  End Sub 
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  Sub getout() 
    ci = Range("ag8").Value 
    Name = Range("F4").Value 
    outfile = Name & "\out.csv" 
    Workbooks.Open Filename:=outfile 
    Range("A1:D750").Select 
    Selection.Copy 
    Windows("PaySim.xls").Activate 
    Sheets("Out.CSV").Select 
    Range("A2").Select 
    ActiveSheet.Paste 
    ActiveWindow.WindowState = xlMinimized 
    ActiveWindow.Close 
    ActiveWindow.WindowState = xlMaximized 
    Windows("PaySim.xls").Activate 
    Sheets("Home").Select 
    Range("A1").Select 
 
    ActiveSheet.Unprotect 
    Para = Range("f5").Value 
       Start = 2 
    endplot = Start + Range("f14").Value 
    ActiveSheet.ChartObjects("Chart 2").Activate 
    ActiveChart.ChartArea.Select 
    ActiveChart.Axes(xlCategory).AxisTitle.Select 
    Selection.Characters.Text = Para 
    Selection.AutoScaleFont = False 
    With Selection.Characters(Start:=1, Length:=5).Font 
        .Name = "Arial" 
        .FontStyle = "Bold" 
        .Size = 9.25 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
        .ColorIndex = xlAutomatic 
    End With 
   
  ActiveChart.ChartArea.Select 
    ActiveChart.ChartTitle.Select 
    
    ci = ci * 100 
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    Selection.Characters.Text = "Risk Analysis" & Chr(10) & "(Average Risk with " & ci & "% 
CI)" 
    Selection.AutoScaleFont = False 
    With Selection.Characters(Start:=1, Length:=40).Font 
        .Name = "Arial" 
        .FontStyle = "Bold" 
        .Size = 11.25 
        .Strikethrough = False 
        .Superscript = False 
        .Subscript = False 
        .OutlineFont = False 
        .Shadow = False 
        .Underline = xlUnderlineStyleNone 
        .ColorIndex = xlAutomatic 
    End With 
     
        ActiveSheet.ChartObjects("Chart 2").Activate 
    ActiveChart.ChartArea.Select 
    ActiveChart.Axes(xlCategory).Select 
    With ActiveChart.Axes(xlCategory) 
        .MinimumScale = Range("f15").Value 
        .MaximumScale = Range("f16").Value 
        .MinorUnitIsAuto = True 
        .MajorUnitIsAuto = True 
        .Crosses = xlAutomatic 
        .ReversePlotOrder = False 
        .ScaleType = xlLinear 
        .DisplayUnit = xlNone 
    End With 
    ActiveChart.Axes(xlValue).Select 
    With ActiveChart.Axes(xlValue) 
        .MinimumScale = -20 
        .MaximumScale = 20 
        .MinorUnitIsAuto = True 
        .MajorUnitIsAuto = True 
        .Crosses = xlAutomatic 
        .ReversePlotOrder = False 
        .ScaleType = xlLinear 
        .DisplayUnit = xlNone 
    End With 
    ActiveChart.ChartArea.Select 
  
    ActiveChart.SeriesCollection(1).XValues = "=Out.CSV!R2C1:R" & endplot & "C1" 
    ActiveChart.SeriesCollection(1).Values = "=Out.CSV!R2C2:R" & endplot & "C2" 
    ActiveChart.SeriesCollection(2).XValues = "=Out.CSV!R2C1:R" & endplot & "C1" 
    ActiveChart.SeriesCollection(2).Values = "=Out.CSV!R2C3:R" & endplot & "C3" 
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    ActiveChart.SeriesCollection(3).XValues = "=Out.CSV!R2C1:R" & endplot & "C1" 
    ActiveChart.SeriesCollection(3).Values = "=Out.CSV!R2C4:R" & endplot & "C4" 
    ActiveWindow.Visible = False 
    Windows("PaySim.xls").Activate 
    ActiveSheet.Protect DrawingObjects:=True, Contents:=True, Scenarios:=True 
    ActiveWindow.Visible = False 
    Windows("PaySim.xls").Activate 
     
    Sheets("Home").Select 
  
     
     
End Sub 
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Source code for paysim.exe (compiled in C) 
 
 
 
#include <math.h> 
#include "rngs.h" 
#include "rvgs.h" 
#include <io.h> 
#include <string.h> 
#include <FCNTL.H> 
#include <stdio.h> 
#include <stdlib.h> 
 
 
 
 
   double Uniform(double a, double b) 
// Returns a uniformly distributed real number between a and b. 
// NOTE: use a < b 
 
{ 
  return (a + (b - a) * Random()); 
} 
 
   double Exponential(double m) 
// Returns an exponentially distributed positive real number. 
// NOTE: use m > 0.0 
 
{ 
  return (-m * log(1.0 - Random())); 
} 
 
 
 
   double Normal(double m, double s) 
// Returns a normal (Gaussian) distributed real number. 
// NOTE: use s > 0.0 
// 
// Uses a very accurate approximation of the normal idf due to Odeh & Evans, 
// J. Applied Statistics, 1974, vol 23, pp 96-97. 
 
{ 
  const double p0 = 0.322232431088;     const double q0 = 0.099348462606; 
  const double p1 = 1.0;                const double q1 = 0.588581570495; 
  const double p2 = 0.342242088547;     const double q2 = 0.531103462366; 
  const double p3 = 0.204231210245e-1;  const double q3 = 0.103537752850; 
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  const double p4 = 0.453642210148e-4;  const double q4 = 0.385607006340e-2; 
  double u, t, p, q, z; 
 
  u   = Random(); 
  if (u < 0.5) 
    t = sqrt(-2.0 * log(u)); 
  else 
    t = sqrt(-2.0 * log(1.0 - u)); 
  p   = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4))); 
  q   = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4))); 
  if (u < 0.5) 
    z = (p / q) - t; 
  else 
    z = t - (p / q); 
  return (m + s * z); 
} 
 
 
 
   double Chisquare(long n) 
// Returns a chi-square distributed positive real number. 
// NOTE: use n > 0 
 
{ 
  long   i; 
  double z, x = 0.0; 
 
  for (i = 0; i < n; i++) { 
    z  = Normal(0.0, 1.0); 
    x += z * z; 
  } 
  return (x); 
} 
 
 
 
 
 
void simulate() 
{ 
    float dstd=0;      //read parameter values from file 
from input.csv file 
 float pstd=0; 
 float std; 
 int   nsamp=0,njob=0,npoint=0; 
 float lplot=0,uplot=0; 
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 float ulimit=0,llimit=0,pcap=0; 
 int capopn=0; 
 int   i,j,k; 
 int precision = 0;      //for determinig the precision 
of calculation of area under normal curve 
 float p; 
 float cifact, cilow, ciup; 
 double areanorm(double x, int precsn); 
 void sort (double risk[10000], int numelt); 
 //read input file created by paysim.xls 
 FILE *infile, *outfile; 
 
 infile=fopen("input.csv","r"); 
 if (infile==NULL) printf("did not read"); 
  //else printf("read"); 
 i = fscanf(infile,"%f\n %f\n %i\n %i\n %i\n %f\n %f\n %f\n %f\n %f\n %i\n %i\n 
%f\n",&dstd,&pstd,&nsamp,&njob,&npoint,&lplot,&uplot,&llimit,&ulimit,&pcap,&precision,&
capopn, &cifact); 
 
    fclose(infile); 
 //input file closed 
 std=pow(pow(dstd,2)+pow(pstd,2),0.5); 
 
 printf("Device Std Dev            = %f\nProcess Std Dev           = %f\n",dstd,pstd); 
 printf("Number of Samples         = %i\nNumber of Sublots         = %i\n",nsamp,njob); 
 printf("Points to be Plotted      = %i\nLower Limit of Plot       = %f\nUpper Limit of Plot       
= %f\n",npoint,lplot,uplot); 
 printf("Lower Specification Limit = %f\nUpper Specification Limit = %f\nPay Cap                   
= %f\n",llimit,ulimit,pcap); 
 printf("Precision                 = %i  (0=Crude, 1=low, 2=Med, 3=High)\n",precision); 
 printf("Pay Cap Option            = %i  (0=Before averaging over sublot, 1=After averaging 
over sublot\n",capopn); 
 printf("Confidence Level          = %f\n",cifact); 
 
 
 
 
 
 long x;        //actual simulation starts here 
 const int num=6000; 
 double rn=0; 
 double chi[10000]; 
 double norm[10000]; 
 double avg; 
 double pwl0=0; 
 double target=0; 
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 double Chisquare(long n); 
 void PutSeed(long x); 
 void SelectStream(int index); 
 double Normal(double m, double s); 
 
 for (j=1;j<=num+1;j++)            //initialise the arrays 
  { 
   chi[j]=0; 
   norm[j]=0; 
  } 
 
 SelectStream(0);                    /* select the default stream */ 
    PutSeed(-1);                        /* and set the state to 1    */ 
 
 outfile=fopen("out.csv","w"); 
 for (i=1;i<=num;i++) 
  { 
   chi[i]=Chisquare(nsamp-1);  //generating chi sq and normal rnd nos 
   norm[i]=Normal(0,1); 
  } 
 
 cilow=0.5*(1-cifact);    //for getting lower limit of confidence interval 
 ciup =cifact+0.5*(1-cifact);  //for getting upper limit of confidence interval 
 
 float rangex =uplot-lplot; 
 float increment=rangex/npoint; 
 double left, right; 
 double meanai, halfwidth,lowci=0, highci=0; 
 double pay[10000]=0; 
    if (capopn == 0)    //pay cap put before averaging over sublot 
 { 
 for (i=0;i<=npoint;i++) 
  { 
   p=lplot + increment * i; 
   pwl0=areanorm((ulimit-p)/pstd,precision)-areanorm((llimit-
p)/pstd,precision); 
   target=55+50*pwl0;   //ideal percent within limits pay 
factor 
   if (target > pcap) target=pcap; //account for pay cap 
 //  printf("i=%f target= %f\n",p,target); 
   double meanrisk=0; 
   double risk[10000]=0; 
   double cumrisk=0; 
   double var=0; 
   for (j=1;j<=num;j++) 
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    { 
     left =((ulimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5)); 
     right=((llimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5)); 
     pay[j]=55 + 50 * (areanorm(left,precision)-
areanorm(right,precision)); 
     if (pay[j] > pcap) pay[j]=pcap;  //pay cap to be 
applied at for each step here 
     risk[j] = pay[j] ; 
     cumrisk = cumrisk + risk[j]; 
    } 
            sort(risk, num); 
   int q1=(num*cilow); 
   int q3=num*ciup; 
   meanrisk = cumrisk/num; 
 
   for (j=1;j<=num;j++)   //find out 90% confidence intervals 
    { 
     var = var + pow((risk[j]-meanrisk),2); 
    } 
 
   halfwidth= cifact * pow((var / (num-1)),0.5); 
   lowci  = meanrisk - halfwidth - target; 
   highci = meanrisk + halfwidth - target; 
            printf("%i%%  complete\n",(100*i/npoint)); 
 
   fprintf(outfile,"%f ,  %f , %f , %f\n", p, meanrisk - target, risk[q1]-target, 
risk[q3]-target); 
  } 
    }   //capopn = 0 ends here 
 
 
        if (capopn == 1)    //pay cap put after averaging over sublot 
 { 
 for (i=0;i<=npoint;i++) 
  { 
   p=lplot + increment * i; 
   pwl0=areanorm((ulimit-p)/pstd,precision)-areanorm((llimit-
p)/pstd,precision); 
   target=55+50*pwl0;   //ideal percent within limits pay 
factor 
   if (target > pcap) target=pcap; //account for pay cap 
 //  printf("i=%f target= %f\n",p,target); 
   double meanrisk=0; 
   double risk[10000]=0; 
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   double cumrisk=0; 
   double var=0; 
   int pos=1; 
   int q1,q3; 
   int reps=num/nsamp; 
 
 
  for (j=1;j<=num;j++) 
    { 
     left =((ulimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5)); 
     right=((llimit-p)*pow(nsamp,0.5)-
norm[j]*std)/(std*pow(chi[j],0.5)); 
     pay[j]=55 + 50 * (areanorm(left,precision)-
areanorm(right,precision)); 
     risk[j] = pay[j] ; 
 
    } 
 
  int s=1; 
  float temp=0.0; 
  double avgpay[10000]=0; 
  double subpay=0; 
  for (j=1;j<=num;j++) 
   { 
    temp=0.0; 
    for (k=1;k<=nsamp;k++) 
     { 
      temp=temp+risk[j]; 
      if (k < nsamp) j=j+1; 
     } 
    subpay=temp/nsamp; 
    if (subpay > pcap) subpay=pcap; 
    cumrisk = cumrisk + subpay; 
    avgpay[s]=subpay; 
    s=s+1; 
   } 
 
 
   meanrisk = cumrisk/reps; 
 
 
 
   sort(avgpay, reps);   //sorting to get upper 95th percentile 
and lower 5th percentile 
   q1=(reps*cilow); 
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   q3=reps*ciup; 
   int mid=reps*0.5; 
            printf("%i%%  complete\n",(100*i/npoint)); 
 
   fprintf(outfile,"%f ,  %f , %f , %f\n", p, meanrisk - target , avgpay[q1]-
target, avgpay[q3]-target); 
  } 
    }   //capopn = 1 ends here 
 
  fclose(outfile); 
} 
 
 
double areanorm(double x, int precsn) 
{ 
 int i, n; 
 if (x < -10) x=-10; 
 double incre, start; 
 
 double area=0.0, area1=0.0, area2=0.0; 
 float min=-10.0; 
 incre=1.0; 
 start=min+incre/2;     //dx=incre for integration of area 
 if (x > -3) 
  { 
 
   start=min+incre/2; 
   for (i=0;i <=6;i++) 
    { 
     area1 = area1 + exp(-pow((start+i*incre),2)/2); 
    } 
  } 
 
    area1 = (incre*area1); 
 
 start=-3; 
 
    if (precsn==0) incre=0.05; 
 if (precsn==1) incre=0.04;      //dx=incre for 
integration of area 
 if (precsn==2) incre=0.03; 
 if (precsn==3) incre=0.004; 
 n=(x-(start))/(2*incre); 
 n=n*2; 
 if (x < -3) n=0; 
 area=area+exp(-pow(start,2)/2) + 4*exp(-pow((start + incre),2)/2); 
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 for (i=2;i<=n-1;i=i+2) 
  { 
   area=area+2*exp(-pow((start+i*incre),2)/2) + 4*exp(-
pow((start+(i+1)*incre),2)/2); 
 
  } 
  //printf("x=%f  #   ",start+n*incre); 
  area=(area1+(incre/3)*(area + exp(-
pow((start+n*incre),2)/2)))/(pow((2*3.1415926),0.5)); 
  return area; 
} 
 
double areanorm(double x, int precsn)     //calculates area under 
normal curve 
           //from -
infinity to x 
{ 
 //area is integrated over two ranges 
 //first from z=-10 to -3 and then from z=-3 to x 
 //printf("*** %i ***",precsn); 
 int i; 
 double area=0.0, area1=0.0, area2=0.0; 
 float min=-10.0; 
 float incre; 
 incre=1.0; 
 float start=min+incre/2;     //dx=incre for integration of 
area 
 if (x < -10) x=-10; 
 if (x > -3) 
  { 
 
   start=min+incre/2; 
   for (i=0;i <=6;i++) 
    { 
     area1 = area1 + exp(-pow((start+i*incre),2)/2); 
    } 
  } 
 
    area1 = (incre*area1); 
 
 min=-3.0; 
 float width=(min-x);                 //consider -10 =-infinity 
 if (x < -3) width=0; 
    if (precsn==0) incre=0.05; 
 if (precsn==1) incre=0.02;      //dx=incre for 
integration of area 
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 if (precsn==2) incre=0.01; 
 if (precsn==3) incre=0.005; 
   // printf("incre = %i",precsn); 
    start=min+incre/2; 
 int nsteps=abs(width*(1/incre))-1; 
 for (i=0;i<=nsteps;i++) 
  { 
   area2 = area2 + exp(-pow((start+i*incre),2)/2); 
  } 
 
 area2=(incre*area2); 
 area = (area1 + area2)/(pow((2*3.1415926),0.5)); 
 //if (x <=-7)  area= area; 
 //else area=0.0; 
 //printf("area1 = %f\narea2 = %f\n",area1,area2); 
 //area=1; 
 return area; 
} 
 
 
void sort (double unsorted[10000], int numelt) 
{ 
 int i,j; 
 double temp; 
 for (i=1; i<=numelt; i++) 
 { 
  for (j=1; j<=(numelt-i); j++) 
  { 
   if (unsorted[j] > unsorted[j+1]) 
    { 
     temp=unsorted[j+1]; 
     unsorted[j+1]=unsorted[j]; 
     unsorted[j]=temp; 
    } 
  } 
 
 } 
 
 
} 
 
 
Code for random number generation (used in the simulation) 
 
 
#include <stdio.h> 
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#include <time.h> 
#include "rngs.h" 
 
#define MODULUS    2147483647 
#define MULTIPLIER 48271 
#define CHECK      399268537 
#define STREAMS    256 
#define A256       22925 
#define DEFAULT    123456789 
 
static long seed[STREAMS] = {DEFAULT}; 
static int  stream        = 0; 
static int  initialized   = 0; 
 
 
   double Random(void) 
// Random returns a pseudo-random real number uniformly distributed 
// between 0.0 and 1.0. 
 
{ 
  const long Q = MODULUS / MULTIPLIER; 
  const long R = MODULUS % MULTIPLIER; 
        long t; 
 
  t = MULTIPLIER * (seed[stream] % Q) - R * (seed[stream] / Q); 
  if (t > 0) 
    seed[stream] = t; 
  else 
    seed[stream] = t + MODULUS; 
  return ((double) seed[stream] / MODULUS); 
} 
 
 
   void PlantSeeds(long x) 
// Use this function to set the state of all the random number generator 
// streams by "planting" a sequence of states (seeds), one per stream, 
// with all states dictated by the state of the default stream. 
// The sequence of planted states is separated one from the next by 
// 8,367,782 calls to Random(). 
 
{ 
  const long Q = MODULUS / A256; 
  const long R = MODULUS % A256; 
        int  j; 
        int  s; 
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  initialized = 1; 
  s = stream;                            // remember the current stream  
  SelectStream(0);                       // change to stream 0           
  PutSeed(x);                            // set seed[0]                  
  stream = s;                            // reset the current stream     
  for (j = 1; j < STREAMS; j++) { 
    x = A256 * (seed[j - 1] % Q) - R * (seed[j - 1] / Q); 
    if (x > 0) 
      seed[j] = x; 
    else 
      seed[j] = x + MODULUS; 
   } 
} 
 
 
   void PutSeed(long x) 
// Use this function to set the state of the current random number 
// generator stream according to the following conventions: 
//    if x > 0 then x is the state (unless too large) 
//    if x < 0 then the state is obtained from the system clock 
//    if x = 0 then the state is to be supplied interactively 
 
{ 
  char ok = 0; 
 
  if (x > 0) 
    x = x % MODULUS;                       /* correct if x is too large  */ 
  if (x < 0) 
    x = ((unsigned long) time((time_t *) NULL)) % MODULUS; 
  if (x == 0) 
    while (!ok) { 
      printf("\nEnter a positive integer seed (9 digits or less) >> "); 
      scanf("%ld", &x); 
      ok = (0 < x) && (x < MODULUS); 
      if (!ok) 
        printf("\nInput out of range ... try again\n"); 
    } 
  seed[stream] = x; 
} 
 
 
   void GetSeed(long *x) 
// Use this function to get the state of the current random number 
// generator stream. 
 
{ 
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  *x = seed[stream]; 
} 
 
 
   void SelectStream(int index) 
// Use this function to set the current random number generator 
// stream -- that stream from which the next random number will come. 
 
{ 
  stream = ((unsigned int) index) % STREAMS; 
  if ((initialized == 0) && (stream != 0))   /* protect against        */ 
    PlantSeeds(DEFAULT);                     /* un-initialized streams */ 
} 
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APPENDIX B3 
 
Source code for BiasSim (Matlab code) 
 
%This is the main simulation engine for BiasSim software.  
%It is used to simulate the risk due to bias in the  
%measurements of a any quality characteristic in highway construction. 
%It uses input file "input.txt" generated by AMSimBias.xls. 
%All ouputs are put in the PF.xls file generated by this software. 
 
fid = fopen('input.txt', 'rt');   %Open Input file made by Excel (AMSimBias.xls) 
 
[A count] = fscanf(fid, '%g %g',[2,inf]);       %Get all input data into A 
A = A'; 
fclose(fid); 
 
%open ouput file and put in the parameter values used 
fid = fopen('PF.csv', 'w');            %This is to reset the file i.e. delete all previous entries 
 
%assign all input values to appropriate variables 
N = A(4,1);                                    %Number of samples in each job 
Col = 1;   
NRuns = A(13,1);                                %Number of jobs with similar statistics 
NPoints = A(6,1);   
 
ProdSigma = A(3,1);                          %Production variability 
MeasureSigmaCont = A(1,1);                   %Measurement variability for contractor 
MeasureSigmaAgency = A(2,1) ;                %Measurement variability for agency 
%MeasureSigmaThparty = 0.5;                 %Measurement variability for third party 
 
SpecLimit1  = A(11,1) ;                         %spec limit for qc/qa comparision for PF (N=1 
comparision) 
SpecLimit3  = A(12,1) ;                        %spec limit for qc/qa comparision for PF (N=3 
comparision) 
%BiasThparty = 0.1*ones(N, Col);            %Bias in third party's density data from actual density 
UpperSpec = A(10,1); 
LowerSpec = A(9,1); 
 
NBias = A(15,1); 
bias = A(16:35,1:2); 
 
CI = A(14,1); 
fclose(fid);                                %close PF.csv; parameter values written so far 
 
fid =fopen('PF.csv', 'a'); 
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fprintf(fid, 'Input Parameter Values used in the simulation:\n'); 
fprintf(fid, 'Production Variability = %8.4f\nContractor Measurement Variability = %8.4f\n', 
ProdSigma, MeasureSigmaCont); 
fprintf(fid, 'Agency Measurement Variability = %8.4f\nN = 1 Spec Limit = %8.2f\nN = 3 Spec 
Limit = %8.2f\n', MeasureSigmaAgency, SpecLimit1, SpecLimit3'); 
fprintf(fid, 'Upper Spec = %8.2f\nLower Spec = %8.2f\n', UpperSpec, LowerSpec); 
 
for z = 1:NBias                         %loop for batch processing 
     
Mu = A(7,1);     %to 100                        %mean density, later to be put in For loop 
Width = A(8,1);                                 %range on the x-axis 
Width = Width - Mu; 
 
Bias1 = bias(z,1);                      %choose bias from the batch 
Bias2 = bias(z,2); 
 
BiasCont   = Bias1*ones(N, Col);            %Bias in contractor's density data from actual density 
BiasAgency = Bias2*ones(N, Col);               %Bias in Agency's density data from actual density 
 
fprintf(fid, 'Contractor Bias= %8.2f,  ,  ,Agency Bias= %8.2f\n', Bias1, Bias2); 
fprintf(fid, ' X-Value,  Mean, LowCI, HighCI\n'); 
Mu = Mu - (Width/(NPoints-1)); 
 
%initializing the variables 
MeanRisk = zeros(NPoints,1); 
LowCI    = zeros(NPoints,1); 
HighCI   = zeros(NPoints,1); 
 
for p = 1:NPoints                       %# points for sweep across the range of analysis 
    Mu = Mu + (Width/(NPoints-1)); 
     
    PFUb = zeros(NRuns,1);                       %for storing pay factors during each run 
    PFB  = zeros(NRuns,1); 
 
    %initializing the variables 
    NormalRandom = zeros(N, Col);               %simulating density with prod variability 
    MeasureRandomCont     = zeros(N, Col); 
    MeasureRandomAgency   = zeros(N, Col);  
    DensityUnbiasedCont   = zeros(N, Col); 
    DensityUnbiasedAgency = zeros(N, Col); 
    DensityCont           = zeros(N, Col); 
    DensityAgency         = zeros(N, Col); 
    DensityUnbiasedPF     = zeros(N, Col); 
    DensityPF             = zeros(N, Col); 
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    for j = 1:NRuns 
 
        %Generating simulated density data  
        %this is without data and without measurement variability 
        NormalRandom = normrnd(Mu, ProdSigma, N, Col);              %two sets for introducing 
two bias values 
 
        %introducing measurement variability 
        MeasureRandomCont     = normrnd(0, MeasureSigmaCont, N, Col); 
        MeasureRandomAgency   = normrnd(0, MeasureSigmaAgency, N, Col); 
 
        %Unbiased emasurements 
        DensityUnbiasedCont    = NormalRandom + MeasureRandomCont; 
        DensityUnbiasedAgency  = NormalRandom + MeasureRandomAgency; 
 
        %Biased measurements 
        DensityCont    =  DensityUnbiasedCont + BiasCont; 
        DensityAgency  =  DensityUnbiasedAgency + BiasAgency; 
 
        %Apply specs to the biased density data 
        %Applying to first biased data 
        OneComp1   = 0;              %to count N=1 pass comparisions 
        ThreeComp1 = 0;              %to count N=3 pass comparisions 
        ThreeFailComp1 = 0;          %to count N=3 fail comparisions 
 
 
        for i = 1:5:N-4 
            %specs comparision for the first biased data 
            if abs(DensityCont(i) - DensityAgency(i)) <= SpecLimit1 
                DensityPF(i:i+4) = DensityCont(i:i+4); 
                OneComp1 = OneComp1 + 1; 
            elseif abs(mean(DensityCont(i+1:i+3)) - mean(DensityAgency(i+1:i+3))) <= SpecLimit3 
                DensityPF(i:i+4) = DensityCont(i:i+4); 
                ThreeComp1 = ThreeComp1 + 1; 
            else 
                DensityPF(i:i+4) = DensityAgency(i:i+4); 
                ThreeFailComp1 = ThreeFailComp1 + 1; 
            end 
     
     
        end    %end of loop for spec comaprisions 
 
        for i = 1:5:N-4 
            %specs comparision for the first unbiased data 
            if abs(DensityUnbiasedCont(i) - DensityUnbiasedAgency(i)) <= SpecLimit1 
                DensityUnbiasedPF(i:i+4) = DensityUnbiasedCont(i:i+4); 
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            elseif abs(mean(DensityUnbiasedCont(i+1:i+3)) - 
mean(DensityUnbiasedAgency(i+1:i+3))) <= SpecLimit3 
                DensityUnbiasedPF(i:i+4) = DensityUnbiasedCont(i:i+4); 
             
            else 
                DensityUnbiasedPF(i:i+4) = DensityUnbiasedAgency(i:i+4); 
             
            end 
     
     
        end    %end of loop for spec comaprisions 
 
        %determine pay factor 
 
        %determine percent within limits for unbiased data 
        AvgUb = mean(DensityUnbiasedPF); 
        StdUb = std(DensityUnbiasedPF); 
        PWLUb = 100*(normcdf(UpperSpec, AvgUb, StdUb) - normcdf(LowerSpec, AvgUb, 
StdUb)); 
 
        %determine PF 
        PFUb(j) = 55 + 0.5*PWLUb; 
 
     
        %determine percent within limits for biased data 
        AvgB = mean(DensityPF); 
        StdB = std(DensityPF); 
        PWLB = 100*(normcdf(UpperSpec, AvgB, StdB) - normcdf(LowerSpec, AvgB, StdB)); 
 
        %determine PF 
        PFB(j) = 55 + 0.5*PWLB; 
 
        %fprintf(fid, '%8.1f %8.1f %8.1f\n', Mu, PF1, PF2); 
 
 
    end                     %end of 1 to NRuns loop; for one mean point in the sweep 
 
%Calculate mean PF and CI for PF at mean value 
Risk = PFB - PFUb;              %positive risk mean contractor got more pay than actual 
MeanRisk(p) = mean(Risk); 
 
%determine confidence interval (5th percentile and 95th percentile) 
SRisk = sort(Risk); 
LowCI(p) = SRisk(round(0.5*(1-CI)*NRuns)); 
HighCI(p) = SRisk(round((CI*NRuns));           %90% CI being formed 
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Run = z 
Progress = 100*p/NPoints 
 
%print the results into a file 
 
fprintf(fid, '%8.1f, %8.1f, %8.1f, %8.1f\n', Mu, MeanRisk(p), LowCI(p), HighCI(p)); 
end             %end of loop for the full sweep across range 
 
fprintf(fid, '\n'); 
 
end             %end of loop for batch processing 
 
fclose(fid); 
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APPENDIX B4 
 
Source code for SRA (Matlab code) 
 
 
sra.m 
 
function retval = sra() 
clear; 
  
fid2 = fopen('input.txt', 'rt');              %Open Input file made by Excel 
(SRA.xls) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
  
%will need to be changed for AC and Density analysis 
% for density pl. enter qcc = 1 
%     voids   pl. enter qcc = 2 
%     AC      pl. enter qcc = 3 
  
qcc = 2; 
  
switch qcc 
case 1 
    qc = 'Density (% Gmm)'; 
    AllowMSigma = 0.50; 
case 2 
    qc = 'Air Voids (%)'; 
    AllowMSigma = 0.23; 
case 3 
    qc = 'AC (%)'; 
    AllowMSigma = 0.05; 
end 
  
  
%open output file 
fid = fopen('ExpDes2.csv', 'w');                  %This is to reset the file 
i.e. delete all previous entries 
fclose(fid);                                 %close the file and delete the 
parameter values written so far 
  
fid =fopen('ExpDes2.csv', 'a'); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
tic 
[A Count] = fscanf(fid2, '%g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g %g 
%g %g %g %g %g %g %g %g %g %g %g %g',[30,inf]); %Get all input data into A 
A = A'; 
fclose(fid2); 
  
%chekc the number of cases to be run from the input file 
Count = 0; 
for i=1:30 
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    if A(1,i)==1 
        Count = Count + 1; 
        Cases(Count) = i; 
    end 
end 
  
% setting up structure of real time plotting window 
% no. of cases = Count 
  
mnpf = 4;                % no. of plots per figure 
% number of figure windows 
nf = floor(Count/mnpf) + 1; 
if Count <= 3 
    ncf = 1; 
    nrf = Count; 
else 
    ncf = 2; 
    nrf = 2; 
end 
     
%Start batch processing i.e. run each case 
  
%initialise summary result variables 
RiskFactorBNeg = zeros(30,1); 
RiskFactorBPos = zeros(30,1); 
RiskFactorB    = zeros(30,1); 
SweetB         = zeros(30,1); 
PeakBiased     = zeros(30,1); 
TroughBiased   = zeros(30,1); 
  
%unbiased portion removed  
RiskFactorUbNeg = zeros(30,1); 
RiskFactorUbPos = zeros(30,1); 
RiskFactorUb    = zeros(30,1); 
SweetUb         = zeros(30,1); 
PeakUnBiased     = zeros(30,1); 
TroughUnBiased   = zeros(30,1); 
  
%############################################################################
######################### 
% loop for each case run starts 
for w = 1:Count 
    
%+++++++++++++++++++++++++++++ Change Comment for output file 
+++++++++++++++++++++++++++++++++++++++=     
fprintf(fid, 'Allowable measurement variability = 0.23. Experimental Design 
Runs\n'); 
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++=     
     
%assign all input values to appropriate variables 
N = A(8,Cases(w));                                  %Number of samples in 
each job 
Col = 1;   
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NRuns = A(2,Cases(w));                             %Number of jobs with 
similar statistics 
NPoints = A(16,Cases(w));   
  
ProdSigma           = A(7,Cases(w));                %Production variability 
MeasureSigmaCont    = A(4,Cases(w));                %Measurement variability 
for contractor 
MeasureSigmaAgency  = A(5,Cases(w)) ;               %Measurement variability 
for agency 
MeasureSigmaThparty = A(6,Cases(w)) ;               %Measurement variability 
for third party 
  
SpecLimit1 = A(14,Cases(w)) ;                       %spec limit for qc/qa 
comparision for PF (N=1 comparision) 
SpecLimit3 = A(15,Cases(w)) ;                       %spec limit for qc/qa 
comparision for PF (N=3 comparision) 
  
            %Bias in third party's density data from actual density 
UpperSpec  = A(13,Cases(w)); 
LowerSpec  = A(12,Cases(w)); 
  
if qcc == 3 
    RejQU = UpperSpec + 0.17; 
    RejQL = LowerSpec - 0.17; 
elseif qcc == 1 
    RejQU = 98.5; 
    RejQL = 87; 
elseif qcc == 2 
    RejQU = 1.5; 
    RejQL = 6.5; 
else 
    msgbox('Please Enter Valid Quality Characteristic Code!'); 
    break 
end 
  
MidSpec    = (UpperSpec + LowerSpec)/2; 
NBias      = Count; 
  
AcceptableRisk = 5;       
  
%Desired Confidence Interval 
CI         = A(3,Cases(w)); 
  
  
fprintf(fid, 'Input Parameter Values used in the simulation:\n'); 
fprintf(fid, 'Production Variability = %8.4f\nContractor Measurement 
Variability = %8.4f\n', ProdSigma, MeasureSigmaCont); 
fprintf(fid, 'Agency Measurement Variability = %8.4f\nThird Party Measurement 
Variability = %8.4f\nN = 1 Spec Limit = %8.2f\nN = 3 Spec Limit = %8.2f\n', 
MeasureSigmaAgency, MeasureSigmaThparty, SpecLimit1, SpecLimit3'); 
fprintf(fid, 'Upper Spec = %8.2f\nLower Spec = %8.2f\n', UpperSpec, 
LowerSpec); 
fprintf(fid, 'Sample Size = %8.0f\n', N); 
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LRange = A(18,Cases(w));                           %mean density, later to be 
put in For loop 
URange = A(19,Cases(w));                               %range on the x-axis 
Width  = URange - LRange; 
Mu     = LRange; 
  
Bias1  = A(9,  Cases(w));                           %choose bias from the 
batch 
Bias2  = A(10, Cases(w)); 
Bias3  = A(11, Cases(w)); 
  
Nmore = 3*N; 
BiasCont    = Bias1;   %*ones(Nmore, Col);            %Bias in contractor's 
density data from actual density 
BiasAgency  = Bias2;   %*ones(Nmore, Col);            %Bias in Agency's 
density data from actual density 
BiasThparty = Bias3;   %*ones(Nmore, Col);            %Bias in Third Party's 
density data from actual density 
  
fprintf(fid, 'Contractor Bias= %8.2f\nAgency Bias= %8.2f\nThird Party Bias= 
%8.2f\n', Bias1, Bias2, Bias3); 
fprintf(fid, 'Risk with Original Data, , , , , , , , , , , , , , , , , , Risk 
with Bias Removed\n'); 
  
fprintf(fid, 'Mu, MeanRisk, LowCI(p), HighCI(p), PFBm, LowCIPF, HighCIPF, 
PFBLm,'); 
fprintf(fid, 'PercentOneComp, PercentThreeComp, PercentThreeFailComp,'); 
fprintf(fid, 'MeanRiskOld(p), LowCIOld(p), HighCIOld(p),PFBOldm, LowCIPFOld, 
HighCIPFOld, PFBLOldm,'); 
fprintf(fid, 'MeanRiskUb(p), LowCIUb(p), HighCIUb(p), PFUbm, LowCIPFUb, 
HighCIPFUb,'); 
fprintf(fid, 'PercentOneCompUb, PercentThreeCompUb, 
PercentThreeFailCompUb,'); 
fprintf(fid, 'MeanRiskUbOld, LowCIUbOld, HighCIUbOld,PFUbOldm, LowCIPFUbOld, 
HighCIPFUbOld\n'); 
  
  
Incre = Width/(NPoints-1); 
  
  
PointDensity = A(17, Cases(w)); 
Mu = Mu - Incre; 
  
  
%SweetSpot  = zeros(NPoints2,2); 
SweetStart1= 0;                             %starting and ending points of 
sweet spot inside the spec limits  
SweetEnd1  = 0; 
SweetStart2= 0; 
SweetEnd2 = 0; 
  
p          = 0; 
  
%initializing values for real-time plotting 
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    x(1)  = 0; 
    y1(1) = 0; 
    y2(1) = 0; 
    y3(1) = 0;   
     
    x1(1)  = 0; 
    y11(1) = 0; 
    y12(1) = 0; 
    y13(1) = 0;   
    y14(1) = 0; 
     
    x11(1) = 0; 
    y21(1) = 0; 
    y22(1) = 0; 
    y23(1) = 0;  
 %clear rp;    
%for p = 1:NPoints                            % points for sweep across the 
range of analysis 
while Mu < URange    
    p = p + 1; 
     
    %determining increment for mean quality charcteristic for plotting 
    if (p > 3)  
        SlopeHighCI = abs((HighCI(p-1)-HighCI(p-2))/(SweetSpot(p-1,1)-
SweetSpot(p-2,1))); 
        SlopeLowCI  = abs((LowCI(p-1)-LowCI(p-2))/(SweetSpot(p-1,1)-
SweetSpot(p-2,1))); 
         
        %average the last two slopes to get slope 
        %this is done to dampen the effect of oscilations (in case of noisy 
output) 
        if (p > 4) 
            SlopeHighCI2= abs((HighCI(p-2)-HighCI(p-3))/(SweetSpot(p-2,1)-
SweetSpot(p-3,1))); 
            SlopeLowCI2 = abs((LowCI(p-2)-LowCI(p-3))/(SweetSpot(p-2,1)-
SweetSpot(p-3,1))); 
            SlopeHighCI = (SlopeHighCI + SlopeHighCI2)/2; 
            SlopeLowCI  = (SlopeLowCI  + SlopeLowCI2 )/2; 
        end 
         
        %the slope is futher dampened because the scale on y axis is not same 
as that one the x-axis 
        Slope       = ((URange - LRange)/40)*(max(SlopeHighCI, 
SlopeLowCI))^2/80; 
         
        Increment   = Incre/(PointDensity*max(Slope,0.001)); 
        Increment   = max(Incre/PointDensity, Increment); 
        Increment   = min(Incre, Increment); 
         
    else  
        Increment = Incre; 
    end 
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    Mu = Mu + Increment; 
    if (Mu  > URange-0.055) 
        Mu = URange; 
    end 
     
    Mu 
%  %unbiased portion removed    
    PFUb = zeros(NRuns,1);                   %for storing pay factors during 
each run 
    PFB  = zeros(NRuns,1); 
  
    %initializing the variables 
    TotNum = Nmore*NRuns; 
  
   % Density                = zeros(N, Col) 
    DensityCont           = zeros(N, Col); 
    DensityAgency          = zeros(N, Col); 
    DensityThparty         = zeros(N, Col); 
     
    %unbiased portion removed 
    DensityUnbiasedPF      = zeros(N, Col); 
    DensityPF              = zeros(N, Col); 
     
        OneComp1   = 0;                    %to count N=1 pass comparisions 
        ContAcceptsDept = 0;               %to count N = 1 fail and 
contractor accepting dept results 
        ThreeComp1 = 0;                    %to count N=3 pass comparisions 
        ThreeFailComp1 = 0;                %to count N=3 fail comparisions 
         
  %unbiased portion removed       
        OneCompUb = 0;                        %to count N=1 pass comparisions 
for unbiased data 
        CAcceptsDUb = 0;                    %to count N = 1 fail and 
contractor accepting dept results for unbiased data 
        ThreeCompUb = 0;                        %to count N=3 pass 
comparisions for unbiased data 
        ThreeFailUb = 0;                        %to count N=3 fail 
comparisions for unbiased data    
    TotNum           = Nmore*NRuns; 
    ReqNum           = N    *NRuns; 
    BufNum           = TotNum - ReqNum; 
     
    DensityC         = normrnd(Mu, ProdSigma, TotNum, Col); 
    DensityContC     = DensityC + normrnd(0, MeasureSigmaCont, TotNum, Col) + 
BiasCont; 
    DensityAgencyC   = DensityC + normrnd(0, MeasureSigmaAgency, TotNum, Col) 
+ BiasAgency; 
    DensityThpartyC  = DensityC + normrnd(0, MeasureSigmaThparty, TotNum, 
Col) + BiasThparty; 
  
    cntC = 0;        %counts no. of rejectable sublots for contractor data 
    cntA = 0;        %counts no. of rejectable sublots for Agency data 
    cntT = 0;        %counts no. of rejectable sublots for Third Party data     
%determine how many sublots will need to be rejected 
            for rq = 1:ReqNum 
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                %replace contractor data with acceptable data 
                while DensityContC(rq) < RejQL 
                    cntC = cntC+1; 
                     
                    %warn if too many rejcted sublots are coming up 
                    if cntC > BufNum          %0.5*N / 5 
                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break;     
                    end  
                     
                    DensityContC(rq) = DensityContC(ReqNum+cntC);       
%replaces the rejectable value 
                end 
            
                 
                while DensityContC(rq) > RejQU 
                    cntC = cntC+1; 
                    %warn if too many rejcted sublots are coming up 
                    if cntC > BufNum          %0.5*N / 5 
                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break;  
                    end 
                    DensityContC(rq) = DensityContC(ReqNum+cntC);       
%replaces the rejectable value 
                end   
  
                %replace Agency data with acceptable data                 
                while DensityAgencyC(rq) < RejQL 
                    cntA = cntA+1; 
                    %warn if too many rejcted sublots are coming up 
                    if cntA > BufNum          %0.5*N / 5 
                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break  
                    end 
                    DensityAgencyC(rq) = DensityAgencyC(ReqNum+cntA);       
%replaces the rejectable value 
                
                end 
                 
                while DensityAgencyC(rq) > RejQU 
                    cntA = cntA+1; 
                    %warn if too many rejcted sublots are coming up 
                    if cntA > BufNum          %0.5*N / 5 
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                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break;  
                    end 
                    DensityAgencyC(rq) = DensityAgencyC(ReqNum+cntA);       
%replaces the rejectable value 
                end  
                 
                %replace Third Party data with acceptable data 
                while DensityThpartyC(rq) < RejQL 
                    cntT = cntT+1; 
                    %warn if too many rejcted sublots are coming up 
                    if cntT > BufNum          %0.5*N / 5 
                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break;  
                    end 
                    DensityThpartyC(rq) = DensityThpartyC(ReqNum+cntT);       
%replaces the rejectable value 
                
                end 
                 
                while DensityThpartyC(rq) > RejQU 
                    cntT = cntT+1; 
                    %warn if too many rejcted sublots are coming up 
                    if cntT > BufNum          %0.5*N / 5 
                        string1 = sprintf('Too many rejected sublots!!!'); 
                        string2 = sprintf('One possiblity is that analysis is 
being done outside realisitc range of parameter values!'); 
                        %disp(string1); 
                        %disp(string2); 
                    break;  
                    end 
                    DensityThpartyC(rq) = DensityThpartyC(ReqNum+cntT);       
%replaces the rejectable value 
                end  
            end         %end of loop for replacing rejectable quality data 
with acceptable quality values 
                    
             
    for j = 1:NRuns 
  
  
  
         
        %Biased measurements 
        iStart = (j-1)*N +1; 
        iEnd   = j*N; 
        DensityCont    =  DensityContC(iStart:iEnd); 
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        DensityAgency  =  DensityAgencyC(iStart:iEnd); 
        DensityThparty =  DensityThpartyC(iStart:iEnd); 
         
        flag = 0; 
             
        
        
        %Apply specs to the biased density data 
        for i = 1:5:N 
             
            rem = N-i; 
            if rem <=4 
                adv = rem; 
            else  
                adv = 4; 
            end 
             
            %specs comparision for the biased data 
            if abs(DensityCont(i) - DensityAgency(i)) <= SpecLimit1 
                DensityPF(i:i+adv) = DensityCont(i:i+adv); 
                OneComp1 = OneComp1 + 1; 
            elseif abs(DensityAgency(i) - MidSpec) < abs(DensityCont(i) - 
MidSpec) 
                DensityPF(i:i+adv) = DensityAgency(i:i+adv); 
                ContAcceptsDept = ContAcceptsDept + 1; 
            elseif adv >= 2 & abs(mean(DensityCont(i:i+2)) - 
mean(DensityThparty(i:i+2))) <= SpecLimit3 
                DensityPF(i:i+adv) = DensityCont(i:i+adv); 
                ThreeComp1 = ThreeComp1 + 1; 
            else 
                DensityPF(i:i+adv) = DensityThparty(i:i+adv); 
                ThreeFailComp1 = ThreeFailComp1 + 1; 
            end 
             
             
            
        end    %end of loop for spec comaprisions 
             
        %simulating the situation when an attempt is first made to remove the 
bias and then apply 
        %comparision limits on them to calculate pay factors 
         
         
        Diff = (DensityCont -DensityAgency); 
         
     %unbiased portion removed    
         Bias = mean(Diff); 
         UnbiasedDiff = Diff - Bias; 
         
        ThDiff = (DensityCont -DensityThparty); 
        ThBias = mean(ThDiff); 
        UnbiasedThDiff = ThDiff - ThBias; 
        for i = 1:5:N 
            %specs comparision for the data from which bias has been removed 
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            if abs(UnbiasedDiff(i)) <= SpecLimit1 
                DensityUnbiasedPF(i:i+adv) = DensityCont(i:i+adv); 
                OneCompUb = OneCompUb + 1; 
            elseif abs(DensityAgency(i) - MidSpec) < abs(DensityCont(i) - 
MidSpec) 
                DensityUnbiasedPF(i:i+adv) = DensityAgency(i:i+adv); 
                CAcceptsDUb = CAcceptsDUb + 1; 
            elseif adv >= 2 & abs(mean(UnbiasedThDiff(i:i+2))) <= SpecLimit3 
                DensityUnbiasedPF(i:i+adv) = DensityCont(i:i+adv); 
                ThreeCompUb = ThreeCompUb + 1; 
            else 
                DensityUnbiasedPF(i:i+adv) = DensityThparty(i:i+adv); 
                ThreeFailUb = ThreeFailUb + 1; 
            end 
     
     
        end    %end of loop for spec comaprisions 
         
       
  
        %determine pay factor 
  
        %unbiased portion removed 
        %determine percent within limits for unbiased data 
        AvgUb = mean(DensityUnbiasedPF); 
        StdUb = std(DensityUnbiasedPF); 
        PWLUb = 100*(normcdfam(UpperSpec, AvgUb, StdUb) - 
normcdfam(LowerSpec, AvgUb, StdUb)); 
  
        %determine PF 
        PFUb(j) = 53 + 0.5*PWLUb; 
        PFUbOld(j) = 55 + 0.5*PWLUb; 
        if PFUbOld(j) > 103 
            PFUbOld(j) = 103; 
        end 
     
        %determine percent within limits for biased data 
        AvgB = mean(DensityPF); 
        StdB = std(DensityPF); 
         
        
         
        PWLB(j) = 100*(normcdfam(UpperSpec, AvgB, StdB) - 
normcdfam(LowerSpec, AvgB, StdB)); 
  
        %determine PF 
        PFB(j) = 53 + 0.5*PWLB(j); 
        PFBOld(j) = 55 + 0.5*PWLB(j); 
        if PFBOld(j) > 103 
            PFBOld(j) = 103; 
        end 
        %fprintf(fid, '%8.1f %8.1f %8.1f\n', Mu, PF1, PF2); 
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    end                                         %end of 1 to NRuns loop; for 
one mean point in the sweep 
   
 %determine how many times N= 1 passed and how many times failed 
 TotComp = OneComp1 + ContAcceptsDept + ThreeComp1 + ThreeFailComp1; 
 PercentOneComp = 100*OneComp1/TotComp; 
 PercentContAcceptsDept = 100*ContAcceptsDept/TotComp; 
 PercentThreeComp = 100*ThreeComp1/TotComp; 
 PercentThreeFailComp = 100*ThreeFailComp1/TotComp; 
  
 %determine how many times N= 1 passed and how many times failed when rel. 
bias removed 
 PercentOneCompUb = 100*OneCompUb/TotComp; 
 PercentCAcceptsDUb = 100*CAcceptsDUb/TotComp; 
 PercentThreeCompUb = 100*ThreeCompUb/TotComp; 
 PercentThreeFailCompUb = 100*ThreeFailUb/TotComp; 
  
 %determine means and CI of PF  
        PFBm        = mean(PFB); 
        SPFB        = sort(PFB); 
        LowCIPF     = SPFB(round(((1-CI)/2)*NRuns)); 
        HighCIPF    = SPFB(round(((1+CI)/2)*NRuns));     % CI being formed 
         
%Old PF case 
%determine means and CI of PF  
        PFBOldm        = mean(PFBOld); 
        SPFBOld        = sort(PFBOld); 
        LowCIPFOld     = SPFBOld(round(((1-CI)/2)*NRuns)); 
        HighCIPFOld    = SPFBOld(round(((1+CI)/2)*NRuns));     % CI being 
formed 
         
  
 %Ideal pay factor (Base line) 
 %Base line is calculated for data mean + production variability 
 NBL = 40000; 
NBLmore = 3*NBL; 
DensityBL = zeros(NBLmore,1); 
DensityBL = normrnd(Mu, ProdSigma, NBLmore, 1);  
% generate random numbers corresponding to allowable measurement variability 
allowmvar = normrnd(0, AllowMSigma, NBLmore, 1); 
DensityBL = DensityBL + allowmvar; 
%replace rejectable quality data with acceptable data 
cnt = 0; 
for rq = 1:NBL 
    while DensityBL(rq) < RejQL | DensityBL(rq) > RejQU 
        cnt = cnt + 1; 
        if cnt > (NBLmore-NBL) 
            break; 
        else 
            DensityBL(rq) = DensityBL(NBL + cnt); 
        end 
    end 
end 
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%determine mean and std of baseline PF 
DensityBLm = mean(DensityBL(1:NBL));  
StdDensityBL = std(DensityBL(1:NBL)); 
PWLBL =  100*(normcdfam(UpperSpec, DensityBLm, StdDensityBL) - 
normcdfam(LowerSpec, DensityBLm, StdDensityBL)); 
PFBLm = 53 + 0.5*PWLBL; 
PFBLOldm = 55 + 0.5*PWLBL; 
  
%apply cap (here pay for each parameter is capped. This is different from 
earlier specs.) 
 if PFBLOldm > 103 
      PFBLOldm = 103; 
  end  
   
%Calculate mean PF and CI for PF at mean value 
RiskBiased  = PFB - PFBLm;                       %positive risk mean 
contractor got more pay than actual 
MeanRisk(p) = mean(RiskBiased); 
  
%determine confidence interval ((100-alpha)th percentile and alph th 
percentile) 
SRisk     = sort(RiskBiased); 
LowCI(p)  = SRisk(round(((1-CI)/2)*NRuns)); 
HighCI(p) = SRisk(round(((1+CI)/2)*NRuns));     % CI being formed 
  
    %Old PF case 
    %Calculate mean PF and CI for PF at mean value 
    RiskBiasedOld  = PFBOld - PFBLOldm;                       %positive risk 
mean contractor got more pay than actual 
    MeanRiskOld(p) = mean(RiskBiasedOld); 
     
    %determine confidence interval ((100-alpha)th percentile and alph th 
percentile) 
    SRiskOld     = sort(RiskBiasedOld); 
    LowCIOld(p)  = SRiskOld(round(((1-CI)/2)*NRuns)); 
    HighCIOld(p) = SRiskOld(round(((1+CI)/2)*NRuns));     % CI being formed 
  
SweetSpot(p,1) = Mu; 
  
% Evlpts2(w,p,1)   = Mu; 
% Evlpts2(w,p, 2:NRuns+1) = SRisk; 
  
%unbiased portion removed 
%Calculate mean PF and CI for PF at mean value (rel. bias removed) 
RiskUnbiased  = PFUb - PFBLm;                    %positive risk means 
contractor got more pay than actual 
MeanRiskUb(p) = mean(RiskUnbiased); 
  
  
%determine confidence interval ((100-alpha)th percentile and alph th 
percentile) (rel. bias removed) 
SRiskUb     = sort(RiskUnbiased); 
LowCIUb(p)  = SRiskUb(round(((1-CI)/2)*NRuns)); 
HighCIUb(p) = SRiskUb(round(((1+CI)/2)*NRuns)); % CI being formed 
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% mean PF and LCL and UCL when rel bias removed 
PFUbm = mean(PFUb); 
SPFUb = sort(PFUb); 
LowCIPFUb = SPFUb(round(((1-CI)/2)*NRuns)); 
HighCIPFUb = SPFUb(round(((1+CI)/2)*NRuns)); % CI being formed on PF when 
rel. bias removed 
  
RiskUnbiasedOld  = PFUbOld - PFBLOldm;                    %positive risk 
means contractor got more pay than actual 
MeanRiskUbOld = mean(RiskUnbiasedOld); 
  
%determine confidence interval ((100-alpha)th percentile and alph th 
percentile) (rel. bias removed) 
SRiskUbOld     = sort(RiskUnbiasedOld); 
LowCIUbOld  = SRiskUbOld(round(((1-CI)/2)*NRuns)); 
HighCIUbOld = SRiskUbOld(round(((1+CI)/2)*NRuns)); % CI being formed 
  
% mean PF and LCL and UCL with old eq. when rel bias removed 
PFUbOldm = mean(PFUbOld); 
SPFUbOld = sort(PFUbOld); 
LowCIPFUbOld = SPFUbOld(round(((1-CI)/2)*NRuns)); 
HighCIPFUbOld = SPFUbOld(round(((1+CI)/2)*NRuns)); % CI being formed 
  
%Progress indicator calculation 
Run         = w 
Progress    = round(100*(Mu-LRange)/(URange-LRange)); 
Prog = sprintf('%8.0f %% Completed', Progress); 
disp(Prog); 
  
%print the results into a file 
  
fprintf(fid, '%8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f,  ', Mu, 
MeanRisk(p), LowCI(p), HighCI(p), PFBm, LowCIPF, HighCIPF, PFBLm); 
fprintf(fid, '%8.2f, %8.2f, %8.2f,  ', PercentOneComp, PercentThreeComp, 
PercentThreeFailComp); 
fprintf(fid, '%8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f,  ', 
MeanRiskOld(p), LowCIOld(p), HighCIOld(p),PFBOldm, LowCIPFOld, HighCIPFOld, 
PFBLOldm); 
fprintf(fid, '%8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f, ', MeanRiskUb(p), 
LowCIUb(p), HighCIUb(p), PFUbm, LowCIPFUb, HighCIPFUb); 
fprintf(fid, '%8.2f, %8.2f, %8.2f,  ', PercentOneCompUb, PercentThreeCompUb, 
PercentThreeFailCompUb); 
fprintf(fid, '%8.2f, %8.2f, %8.2f, %8.2f, %8.2f, %8.2f\n ', MeanRiskUbOld, 
LowCIUbOld, HighCIUbOld,PFUbOldm, LowCIPFUbOld, HighCIPFUbOld); 
  
%store all the results printed in the file in a matrix as well 
  
%results corresponding to New PF Eq. 
row(1, 1:8)   = [Mu, MeanRisk(p), LowCI(p), HighCI(p), PFBm, LowCIPF, 
HighCIPF, PFBLm]; 
row(1, 9:11)  = [PercentOneComp, PercentThreeComp, PercentThreeFailComp]; 
  
%results corresponding to Old PF Eq. 
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row(1, 12:18) = [MeanRiskOld(p), LowCIOld(p), HighCIOld(p),PFBOldm, 
LowCIPFOld, HighCIPFOld, PFBLOldm]; 
  
%results corresponding to New PF Eq. with rel. bias removed 
row(1, 19:24) = [MeanRiskUb(p), LowCIUb(p), HighCIUb(p), PFUbm, LowCIPFUb, 
HighCIPFUb]; 
row(1, 25:27) = [PercentOneCompUb, PercentThreeCompUb, 
PercentThreeFailCompUb]; 
  
%results corresponding to Old PF Eq. when rel. bias removed 
row(1, 28:33) = [MeanRiskUbOld, LowCIUbOld, HighCIUbOld,PFUbOldm, 
LowCIPFUbOld, HighCIPFUbOld]; 
  
rp(w, p, 1:33) = row; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% uncomment this section for activating real time plotting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% fg = floor((w-1)/mnpf) + 1; 
% figure(fg); 
% subplotnum = w-(fg-1)*mnpf; 
% if subplotnum == 1  
%     clf; 
% end 
%  
% subplot(nrf, ncf, subplotnum); 
% if p == 1 
%     cla; 
% end 
%  
% hold on; grid on; 
% xlabel(qc); 
% ylabel('Risk (% Bid Amount)'); 
%  
% as = num2str(AllowMSigma, '%6.2f'); 
% sp = num2str(ProdSigma, '%6.2f'); 
% sm = num2str(MeasureSigmaCont, '%6.2f'); 
% ns = num2str(N, '%5.0f'); 
% sl1= num2str(SpecLimit1, '%6.2f'); 
% sl3= num2str(SpecLimit3, '%6.2f'); 
%  
% if BiasCont == 0 
%     bs = 'Low '; 
% else 
%     bs = 'High'; 
% end 
%  
% ttl = ['Sig-P=', sp, '   Sig-M=', sm, '   N=', ns, '  Bias=', bs]; 
% title(ttl); 
% axis([2, 6, -30, 30]); 
%  
% h = plot(x, y1, 'k');  
% h2 = plot(x, y2, 'b-x'); 
% h3 = plot(x, y3, 'b-x'); 
%  
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% set(h, 'erasemode', 'none'); 
% set(h2, 'erasemode', 'none'); 
% set(h3, 'erasemode', 'none'); 
%  
%  
%     drawnow 
%     x  = rp(1:p, 1); 
%     y1 = rp(1:p, 2); 
%     y2 = rp(1:p, 3); 
%     y3 = rp(1:p, 4); 
%     set(h, 'xdata', x, 'ydata', y1); 
%     set(h2, 'xdata', x, 'ydata', y2); 
%     set(h3, 'xdata', x, 'ydata', y3); 
%  
%  
% %Draw mean PF, confidence limits and base line pay     
% fg1 = fg + 100; 
% figure(fg1); 
% subplotnum = w-(fg1-101)*mnpf; 
% if subplotnum == 1 
%     clf; 
% end 
%  
% subplot(nrf, ncf, subplotnum); 
% if p ==1 
%     cla; 
% end 
% hold on; grid on; 
% xlabel(qc); 
% ylabel('Pay Factor (%)'); 
%  
% as = num2str(AllowMSigma, '%6.2f'); 
% sp = num2str(ProdSigma, '%6.2f'); 
% sm = num2str(MeasureSigmaCont, '%6.2f'); 
% ns = num2str(N, '%5.0f'); 
%  
% ttl = ['Sig-P=', sp, '   Sig-M=', sm, '   N=', ns, '  Bias=', bs]; 
% title(ttl); 
% axis([2, 6, 60, 105]); 
%  
% h11 = plot(x1, y11, 'k', 'linewidth', 2);  
% h12 = plot(x1, y12, 'r--'); 
% h13 = plot(x1, y13, 'r--'); 
% h14 = plot(x1, y14, 'k-*'); 
%  
% set(h11, 'erasemode', 'none'); 
% set(h12, 'erasemode', 'none'); 
% set(h13, 'erasemode', 'none'); 
% set(h14, 'erasemode', 'none'); 
%  
%  
%     drawnow 
%     x1  = rp(1:p, 1); 
%     y11 = rp(1:p, 5); 
%     y12 = rp(1:p, 6); 
%     y13 = rp(1:p, 7); 
%     y14 = rp(1:p, 8); 
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%     set(h11, 'xdata', x1, 'ydata', y11); 
%     set(h12, 'xdata', x1, 'ydata', y12); 
%     set(h13, 'xdata', x1, 'ydata', y13); 
%     set(h14, 'xdata', x1, 'ydata', y14); 
%      
%     legend('Mean PF', 'Low CL PF', 'Up CL PF', 'Base Line', 0); 
%      
%   %Draw mean risk, LCL, and UCL when rel Bias is removed   
% fg2 = fg + 200; 
% figure(fg2); 
% subplotnum = w-(fg2-201)*mnpf; 
% if subplotnum == 1 
%     clf; 
% end 
%  
% subplot(nrf, ncf, subplotnum); 
% if p ==1 
%     cla; 
% end 
%  
% hold on; grid on; 
% xlabel(qc); 
% ylabel('Risk (% Bid Amount)'); 
%  
% as = num2str(AllowMSigma, '%6.2f'); 
% sp = num2str(ProdSigma, '%6.2f'); 
% sm = num2str(MeasureSigmaCont, '%6.2f'); 
% ns = num2str(N, '%5.0f'); 
% sl1= num2str(SpecLimit1, '%6.2f'); 
% sl3= num2str(SpecLimit3, '%6.2f'); 
%  
% if BiasCont == 0 
%     bs = 'Low '; 
% else 
%     bs = 'High'; 
% end 
%  
% ttl = ['Sig-P=', sp, '   Sig-M=', sm, '   N=', ns, '  Bias=', bs]; 
% title(ttl); 
% axis([2, 6, -30, 30]); 
%  
% h21 = plot(x11, y21, 'k');  
% h22 = plot(x11, y22, 'b-x'); 
% h23 = plot(x11, y23, 'b-x'); 
%  
% set(h21, 'erasemode', 'none'); 
% set(h22, 'erasemode', 'none'); 
% set(h23, 'erasemode', 'none'); 
%  
%  
%     drawnow 
%     x11 = rp(1:p, 1); 
%     y21 = rp(1:p, 19); 
%     y22 = rp(1:p, 20); 
%     y23 = rp(1:p, 21); 
%     set(h21, 'xdata', x11, 'ydata', y21); 
%     set(h22, 'xdata', x11, 'ydata', y22); 
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%     set(h23, 'xdata', x11, 'ydata', y23); 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       
     
end                      %end of loop for the full sweep across range 
clear risk;  
risk(:, :) = rp(w,1:p,1:4); 
%risk = risk' 
nrband(w) = nrb(risk, [LowerSpec UpperSpec]); 
rindices(1:5, 1:3, w) = msrisk(risk, [LowerSpec UpperSpec]); 
plotnum = num2str(w, '%2f'); 
%matname = ['ExpDes', w, '.mat']; 
%save matname rp; 
  
LenB = p;   %length(HighCI); 
LenU = p;   %length(HighCIUb); 
%SweetSpot = zeros(max(LenB, LenU),3); 
  
  
  
fprintf(fid, '\n'); 
  
fprintf(fid, 'Narrow Risk Band Width =, %5.2f\n', nrband(w)); 
fprintf(fid, ', Q Char , Low CI, High CI\n'); 
fprintf(fid, 'Mid Point, %8.2f, %8.2f, %8.2f\n', rindices(1,1,w), 
rindices(1,2,w), rindices(1,3,w)); 
fprintf(fid, 'Lower Spec LImit, %8.2f, %8.2f, %8.2f\n', rindices(2,1,w), 
rindices(2,2,w), rindices(2,3,w)); 
fprintf(fid, 'Upper Spec Limit, %8.2f, %8.2f, %8.2f\n\n', rindices(3,1,w), 
rindices(3,2,w), rindices(3,3,w)); 
fprintf(fid, 'Maximum Negative Risk =, %5.2f, for the quality characteristic 
value =, %5.2f\n', rindices(4, 2, w), rindices(4, 1, w)); 
fprintf(fid, 'Maximum Positive Risk =, %5.2f, for the quality characteristic 
value =, %5.2f\n\n\n', rindices(5, 2, w), rindices(5, 1, w)); 
  
PTime = toc; 
fprintf(fid, 'Processing Time = %5.2f\n\n\n', PTime); 
end                                           %end of loop for batch 
processing 
  
fprintf(fid, '\n\n\n'); 
  
  
fclose(fid); 
nrband 
rindices 
%save 'ExpDes2.mat' rp; 
%save 'EvalnPtsExpDes2.mat' Evlpts2; 
totaltime= toc 
  
retval = 0 
 
riskPmeas.m 
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% this code is used to read a csv output file generated by sra.m for 
% experimental design runs. the gaps between successive runs had to be 
% removed for easier reading by matlab.  
% This code calculates various measures of goodness of the risk plots for 
% determining the effect of various parameters in risk.  
clear; 
resolution = 100; 
speclimits = [2.65, 5.35]; 
load ED6.csv; 
out = ED6; 
  
%identify the sets of data for each case run 
n = length(out); 
count = 0;      %no. of cases in the output 
for i = 1:n 
    if out(i, 1) == 2 
        count = count + 1; 
        %starting point of each case 
        caseind(count,1) = i; 
  
        %ending point of each run 
        if count > 1 
            caseind(count-1,2) = i-1; 
        end 
    end 
     
end 
  
%ending point of entire data set 
caseind(count,2) = n; 
  
%setting resolution to be an even number 
if (rem(resolution,2) == 1) 
    resolution = resolution - 1; 
end 
  
for i = 1:count 
    %select data for each case 
    risk = out(caseind(i, 1):caseind(i, 2), 1:4); 
    npoints = caseind(i, 2) - caseind(i, 1) + 1; 
     
    % interpolate to greater resolution  
    xx = linspace(risk(1,1), risk(npoints, 1), resolution+1); 
    irisk(1:resolution+1, 1) = xx';  
    irisk(1:resolution+1, 3) = spline(risk(:, 1), risk(:, 3), xx)'; 
    irisk(1:resolution+1, 4) = spline(risk(:, 1), risk(:, 4), xx)'; 
     
    % narrow risk band 
    nrband(i) = nrb(irisk, speclimits); 
    % risk at mid point and spec limits and maximum and minmum risk 
    mrisk(1:5, 1:3, i) = msrisk(irisk, speclimits); 
     
%     figure(i) 
%     clf; 
%     hold on;  
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%     axis([2 6 -30 30]); 
%     grid on; 
%     plot(irisk(:, 1), irisk(:,3), irisk(:,1), irisk(:,4)); 
%     plot(risk(:,1), risk(:,2), 'r'); 
     
end 
  
  
%put the results in another output file in a summary form 
fid = fopen('ExpDesIndices6.txt', 'w'); 
fprintf(fid, 'NRB   MidRisk-LCL MidRisk-UCL LSLRisk-LCL LSLRisk-UCL LSLRisk-
LCL LSLRisk-UCL  LocMN  MaxNegRisk    LocMP  MaxPosRisk\n'); 
  
for i = 1:count 
    fprintf(fid, '%8.2f    %8.2f      %8.2f    ', nrband(i), mrisk(1, 2, i), 
mrisk(1, 3, i)); 
    fprintf(fid, '%8.2f    %8.2f      %8.2f     %8.2f    ', mrisk(2, 2, i), 
mrisk(2, 3, i), mrisk(3, 2, i), mrisk(3, 3, i)); 
    fprintf(fid, '%8.2f    %8.2f      %8.2f     %8.2f    \n', mrisk(4, 1, i), 
mrisk(4, 2, i), mrisk(5, 1, i), mrisk(5, 2, i)); 
     
end 
  
fclose(fid); 
  
nrband 
mrisk 
 
ptrindex4.m 
 
% calculates riskindex at a single point of evaluation 
% it takes a representative set of risk values and takes their moment 
% about the mean and returns that value.  
%This file is same as ptrindex.m except that the exponent is  
% proportional to the magnitude of the risk value rather than  
% relative to its position within the band.  
  
function retval = ptrindex3(risk) 
  
nmmt = 100; 
%sort risk values 
risk = abs(risk); 
risk = sort(risk); 
  
%select nmmt representative values from the sorted list for taking moment 
n = length(risk);       %number of evaluations at a point 
incre = n/nmmt; 
  
for i = 1:nmmt 
    trim(nmmt-i+1) = risk(n-floor((i-1)*incre)); 
end 
  
range = 50; 
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rind = zeros(1,2); 
for i = 1:nmmt 
     
    %first pt risk index. weight changes exponentially 
    if range == 0 
        expo = 1; 
    else 
        expo(1) = 0.5 + trim(i)/range; 
    end 
    rind(1) = rind(1) + trim(i)^expo;     
     
    %second pt risk index. weight changes linearly 
    factor = 1   + trim(i)/range; 
    rind(2) = rind(2) + trim(i)*factor; 
     
     
     
end 
  
retval = (1/nmmt)*rind; 
 
nrb.m 
 
%this code calculates the narrow risk band in a risk plot 
  
function bandwidth = nrb(irisk, specwidth) 
resolution = 100; 
clear band; 
band(:, 2) = irisk(:, 4) - irisk(:, 3); 
band(:, 1) = irisk(:, 1); 
  
% find out no. of evaluated points 
[m, n] = max(irisk(:,1)) 
  
mid = floor(n/2)+1; 
  
%initialize the variables 
startnrb = band(mid, 1); 
endnrb = band(mid, 1); 
split = mid; 
for i = mid:-1:1 
    if band(i, 2) <= 5 
        split = i; 
        %startnrb = band(i, 1); 
    else  
        break; 
    end 
end 
split 
if split > 2 
    x = band(split-2:split+2, 1); 
    y = band(split-2:split+2, 2); 
else 
    switch split 
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        case 1 
            x = band(split:split+4, 1); 
            y = band(split:split+4, 2); 
        case 2 
            x = band(split-1:split+3, 1); 
            y = band(split-1:split+3, 2); 
    end 
end 
  
     
yy(:,1) = linspace(x(1), x(5), resolution)'; 
yy(:, 2) = spline(x, y, yy(:,1)); 
  
for i = resolution:-1:1 
    if yy(i, 2) <= 5 
        startnrb = yy(i, 1); 
    else  
        break; 
    end 
end 
  
split = mid; 
for i = mid:n 
    if band(i, 2) <= 5 
        split = i; 
        endnrb = band(i, 1); 
    else  
        break; 
    end 
end 
  
if split < n-2 
    x = band(split-2:split+2, 1); 
    y = band(split-2:split+2, 2); 
else  
    switch split 
        case n-1 
            x = band(split-3:split+1, 1); 
            y = band(split-3:split+1, 2); 
        case n 
            x = band(split-4:split, 1); 
            y = band(split-4:split, 2); 
    end 
end 
  
yy(:,1) = linspace(x(1), x(5), resolution)'; 
yy(:, 2) = spline(x, y, yy(:,1)); 
  
for i = 1:resolution 
    if yy(i, 2) <= 5 
        endnrb = yy(i, 1); 
    else  
        break; 
    end 
end 
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bandwidth = endnrb - startnrb; 
  
 
msrisk.m 
 
% this code takes a risk plot and spec limits and returns risk at the mid 
% spec and at spec limits.  
% structure of returning matrix 
% retval =  
%   [mean       lowrisk     highrisk 
%    lspec      lowrisk     highrisk 
%    uspec      lowrisk     highrisk 
%    minpos     minrisk         0 
%    maxpos     maxrisk         0    ] 
  
  
function retval = msrisk(irisk, speclimits) 
  
xrisk = [mean(speclimits), speclimits ]; 
  
% quality characteristic 
retval(1:3, 1) = xrisk'; 
% low at mid spec and spec limits 
splow = spline(irisk(:,1), irisk(:,3)); 
retval(1:3, 2)= ppval(splow, xrisk)'; 
% high at mid spec and spec limits 
sphigh = spline(irisk(:,1), irisk(:,4)); 
retval(1:3, 3)= ppval(sphigh, xrisk)'; 
% maximum positive risk 
xx = linspace(speclimits(1), speclimits(2), 200); 
finerisk(1,:) = ppval(splow, xx); 
finerisk(2,:) = ppval(sphigh, xx); 
[ymin, imin] = min(finerisk(1,:)); 
[ymax, imax] = max(finerisk(2,:)); 
retval(4,1:2) = [xx(imin) ymin]; 
retval(5,1:2) = [xx(imax) ymax]; 
  
 
 
 






