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Introduction to Rutting 

There is a multitude of factors that go into the design, construction, and overall usability 

of pavements. Without proper designs that follow guidelines set by state DOTs and federal 

regulations, along with poor construction practices, the functionality of the roadway can be 

compromised and even dangerous. With that being said, predicting inevitable pavement failures 

can be vital when it comes to the maintenance and creation of these asphalt sections.  

One significant form of failure is pavement rutting. Pavement rutting is defined as a 

depression in a pavement structure at the location of a vehicle’s wheel path. Figure 1, shown 

below, is a pronounced example of rutting on a typical roadway.  

 

Figure 1. Typical Pavement Failure - Rutting 

Rutting is vital to understanding a pavement structure because of the multitude of factors that 

play into its existence. These factors mainly fall under two categories, one of which relies more 

heavily on the pavement construction and the types of loads it is withstanding. At the same time, 

the other depends on the environment in which the pavement is performing. Most instances of 

rutting on a well-designed pavement structure only drop a few millimeters from its designed 

height. With so many underlying components, being able to predict how deep a pavement is 

going to rut over time can be a challenge. With the use of Artificial Neural Network modeling, it 

can be done with a more predictable level of certainty.  

 

 



3 
 

Introduction to Artificial Neural Networks 

Artificial Neural Networks, or ANN for short, are highly complex models that use the 

same organizational structure as the human brain to create a solution for different input data sets. 

The model can go from an input value to an output value using a series of hidden layers 

containing neurons that all hold different weights in terms of importance. Figure 2 below shows 

this process as the model learns from the data.  

 

 

 

 

 

 

 

 

 

 

Figure 2. ANN Example Network 

To create such a network, MATLAB is one valuable tool. Using this software, the user 

can specify the number of hidden layers, the number of neurons each layer contains, and how to 

train the data to produce a predictable model. To create this accurate model, three more factors of 

concern are how the model is trained, validated, and tested. The training set manipulates the 

significance of different layers in the neural network. In contrast, the validation set is used to 

control the different paths that will be taken inside the network (more of the structure of the 

neural network itself). The test set is used to evaluate the accuracy of the model once the output 

has been created. By utilizing these three sets of data, the network can be trained so that errors 

can be reduced to a minimum.  
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Another subset of the ANN modeling capabilities of MATLAB is transfer functions. 

Transfer functions are how the created network can decipher nonlinear data from input to output. 

Using the tansig and logsig transfer functions, a relationship between the neurons in the hidden 

layers is created to weigh their importance in creating an accurate rutting prediction.  

Objective, Scope, and Limitations 

This study aims to develop an ANN model that can accurately predict rutting in asphalt 

pavement structures using structural and loading data from the Long Term Pavement 

Performance (LTPP) infopave. This data includes values for structural number, 18-kip 

Equivalent Single Axle Loads, Annual Average Daily Truck Traffic, depth of asphalt concrete, 

and the number of pavement layers.  

The structural number is a value from a pavement layer coefficient, thickness, and 

drainage coefficient that indicates a pavement strength capacity from its physical makeup or 

structure. The depth of asphalt concrete and the number of pavement layers has to do with the 

pavement structure and how it was designed to withhold different stresses applied to it. A 

pavement with a higher structural number can typically withstand more load before failure is 

induced from a loading standpoint. 18-kip Equivalent Single Axle Loads, or 18-kip ESAL for 

short, is a value used to represent the total load that an asphalt pavement has been subject to over 

a designated period of time converted to a value of 18,000-pound axle loads. This value allows a 

better structure for comparing loads on a pavement. Annual Average Daily Truck Traffic, or 

AADTT for short, is defined as the volume of truck traffic for 24 hours on a pavement structure 

spread over a year. Due to the weight of large vehicles, this value is representative of the loading 

on a pavement structure that can cause the most damage and rutting.  

The scope of this research is limited to pavement values given by LTPP Infopave. Since 

not all pavement sections studied by Infopave contained information regarding the structural and 

loading data previously stated, values for pavement rutting in this paper are restricted to Illinois 

pavement locations that have been tested for up to five decades. LTPP Infopave was initially 

created as a gathering point for pavement data across the nation, all of which are to be used for 

further pavement testing and research. Having been used for countless research papers and 
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studies, the values accumulated by the organization are considered helpful for this scope of 

research.  

Modeling Process 

Due to the uniqueness of the LTPP data for each pavement, the model had to be tested 

with different neurons, hidden layers, and transfer functions until a structure was found that had 

a certain degree of accuracy in predicting rutting depth. Before being able to run an accurate 

model, the optimal model constraints needed to be accumulated. Finding these optimal 

conditions meant using a combination of tansig and logsig transfer functions for two hidden 

layers while increasing the neurons in each layer with each model run. By continually trying 

these different scenarios, the ideal conditions could eventually be established by gauging each 

trials Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and r value 

(the strength of the model in terms of a linear relationship between predicted and actual rutting 

values). Table 1 below details this trial-and-error process to find the ideal model configuration. 
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The RMSE of a model run, which is also a measure of differences between predicted and 

actual rutting values, is valid when it lies between 0.2 and 0.5. Between these two values, it is 

safe to say that the model is relatively accurate in prediction. Below is the equation used for 

RMSE to get this value. 

 

In this equation, N is the number of pavement test sections predicted in the model, A is the 

rutting depth collected from LTPP Infopave, and P is the predicted rutting depth created through 

the ANN model.  

 Another useful tool to determine which model structure will work best in terms of 

predicting accurate rutting depths is the MAPE equation. This equation shows how accurately 

Table 1. Trial-and-Error Process for Optimal Model Configuration 
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the ANN model can forecast rutting depth. MAPE values below 5 are considered fantastic 

indications of a model’s ability to predict rutting depth accurately. Below is the equation used to 

get the MAPE of each trial run. 

 

In this equation, n is the number of pavement test sections being predicted in the model, A is the 

rutting depth collected from LTPP Infopave, and P is the rutting depth calculated through the 

ANN model. 

 After running the model with various constraints as stated above, the most accurate 

model structure, highlighted in the trial-and-error table, contained two hidden layers, each with 6 

neurons using the tansig transfer function in both hidden layers. Below is an image consisting of 

an ANN model with these parameters. 

 

Figure 3. Optimal Model Configuration 
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With an RMSE of about 0.43, a MAPE of 4.7, and an r-value of 0.91, this structure was the most 

successful in the trial modeling process.  

Results 

 Using the ANN model structure detailed above, MATLAB was utilized to develop data 

showing how well the model performed. The calculated MAPE of the ANN’s prediction was 4.7, 

indicating that the model was extremely accurate in forecasting future rut depth in pavement 

structures. The RMSE calculated inside the software also fell into an acceptable range for the 

model’s prediction efforts with a value of 0.43. Along with these prediction accuracy equations, 

graphs detailing R values and overall fit between the actual and predicted rutting data were also 

created. These graphs, shown below, were created in MATLAB to show how accurately the 

ANN model predicted rutting depth for the 29 pavement sections studied. Since actual rutting 

depths varied from 3 to 12 mm, MATLAB created these graphs with a factor to consolidate the 

data into more visually pleasing graphs. The final graph containing the totality of the data was 

also created in excel to show the R-squared value of the data, just another representation of how 

well the model could predict rutting values.  
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Figure 4. Predicted V Actual Rutting Depth for Training, Validation, and Test Data 

 

Figure 5. Predicted V Actual Rutting for Entire Dataset (With R squared value) 
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As can be seen, by the graphs shown, the data is trained using the tansig-tansig 

combination of transfer functions to have a relatively linear relationship that decides the 

importance of each hidden layer. From there, the model was able to accurately determine each 

neuron's weight throughout each hidden layer, which is shown by a nearly perfectly linear 

validation set (r = 0.99). Using these parameters, the test data proved to be accurate, with an R-

value of 0.96. The combination of all these predictions for the entire set can be seen in the Whole 

Data graph, and in the prediction v actual rutting for all data graphs with an R squared value of 

0.84. Considering an R squared value of 1 describes perfectly linear data, this model is sufficient 

with an error of about 16 percent in terms of predicted rutting depth in the pavement.  

 The reason for this error can be the cause of multiple parameters, the most important 

being the LTPP data itself. With a range of similar rutting depths to the nearest millimeter, 

structural numbers calculated and rounded by LTPP Infopave, and other discrepancies between 

structural and loading values, the model can only be so accurate given amounts of hidden layers, 

neurons and transfer functions. On top of this, there are some inconsistencies regarding rutting 

prediction between each complete model run. This is due to the code training, validating, and 

testing of different pavement sections with each trial. This makes it evident that some sections 

are more accurate at determining parameter importance inside the complete dataset. This could 

cause inconsistency when different pavement sections are entered into the program for rut 

prediction purposes.  

Conclusion 

Using MATLAB with the addition of LTPP Infopave pavement data, an Artificial Neural 

Network model consisting of hidden layers, neurons, and transfer functions with varying levels 

of importance was created to predict rutting depth in the pavement to a certain degree of 

accuracy. Using this research, rutting depth can be predicted to understand pavement sections in 

Illinois better and alleviate the severity of this failure in the future.  
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Appendix 

Table 2. LTPP Infopave Data Utilized 
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Optimal MATLAB Code 
%% Data Input and Preparation 
clc; clear; close all; 
in=xlsread('Input(1).xlsx');  % Input File 
out=xlsread('Output(1).xlsx');    % Output File 
data = [in out]; 
input=[1 2 3 4 5]; % Input Layers 
p=data(:,input); 
output=[6]; % Output Layer 
t=data(:,output);  
p=p'; t=t'; 
% Transposing Matrices 
t = log(t+1); 
% Defining Validation Dataset 
trainRatio1=0.7;  
valRatio1=0.15;  
testRatio1=0.15; 
% Network Definition 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
nnn1=1;  % First Number of Neurons in the First Hidden Layer 
nnnj=1;  % Jump in Number of Neurons in the first Hidden Layer 
nnnf=6; % Last Number of Neurons in the First Hidden Layer  
net1.trainparam.lr=0.1;  
net1.trainParam.epochs=500; 
% Training Network 
it = 20; 
% Max Number of Iteration  
ii = 0; 
netopt{:}=1:nnnf; 
for nnn=nnn1:nnnj:nnnf   
    ii=ii+1; nnn;  
    net1=newff(p,t,[nnn nnn]);  % For more functions see: 'Function Reference' in 
'Neural Network Toolbox' of Matlab help 
    evalopt(ii)=100;  
    for i=1:it 
        [net1,tr,y,et]=train(net1,p,t); 
        net1.layers{1}.transferFcn = 'tansig'; 
        net1.layers{2}.transferFcn = 'tansig'; 
        net1.divideParam.trainRatio=trainRatio1; 
        net1.divideParam.valRatio=valRatio1; 
        net1.divideParam.testRatio=testRatio1; 
        estval=sim(net1,p(:,tr.valInd)); 
        eval=mse(estval-t(:,tr.valInd)); 
        if eval<evalopt(ii)              
           netopt{(ii)}=net1; 
           tropt(ii)=tr; evalopt(ii)=eval; 
        end 
    end 
end 
%% Error Plot 
plot(nnn1:nnnj:nnnf,evalopt) 
%% Output  
nn = 6; 
ptrain=p(:,tropt(nn).trainInd);      
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ttrain=t(:,tropt(nn).trainInd);      
esttrain=sim(netopt{nn},ptrain);  
ptest=p(:,tropt(nn).testInd);        
ttest=t(:,tropt(nn).testInd);       
esttest=sim(netopt{nn},ptest);  
pval=p(:,tropt(nn).valInd);          
tval=t(:,tropt(nn).valInd);          
estval=sim(netopt{nn},pval);  
estwhole=sim(netopt{nn},p); 
% Calculation of RMSE  
e = t-y; 
pre_MAPE = abs((y-t)./t); 
MAPE = mean(pre_MAPE(isfinite(pre_MAPE)))*100 
RMSE = (mse(net1,t,y,'regularization',0.1))^(1/2) 
%% Visuals 
view(net1) 
%figure; plot(ttrain,esttrain,'.b'); 
%figure; plot(tval,estval,'.g'); 
%figure; plot(ttest,esttest,'.r'); 
%figure; plot(t,estwhole,'.k') 
figure; 
plotregression(ttrain,esttrain,'Train',tval,estval,'Validation',ttest,esttest,'Test',
t,estwhole,'Whole Data'); 

 


