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ABSTRACT 

Pavement rutting negatively impacts vehicular travel by potentially damaging tires; this can 

bring about an economic burden to both citizens and industry. The ability to predict pavement 

rutting through an Artificial Neural Network (ANN) can ensure rutting is fixed before severe 

damage to tires can occur. Climate and rutting data were collected from the Long Term 

Pavement Performance (LTPP) database to model an ANN that can predict pavement rutting 

accurately. An optimal model was determined through trial and error based on LTPP data from 

pavement sections in the Midwestern United States. This model was able to predict rutting in 

other pavement sections with high accuracy, which results in this method being a viable way to 

predict pavement performance and the need for repairs.  

INTRODUCTION 

Rutting is a permanent deformation of pavement that occurs over time due to structural and 

climate factors. When rutting occurs, a visible wheel path forms that can affect the lifespan of 

pavement and tires. It is necessary to fix rutting in the pavement to prevent tire damage and 

extend the life of a pavement structure. If a pavement structure is not repaired, it can result in 

economic losses and negatively affect people's daily lives. 
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OBJECTIVE 

This paper aims to determine the effectiveness of using an Artificial Neural Network (ANN) 

model to predict pavement rutting due to climate factors. This will involve determining an 

optimal model and measuring prediction error. 

Artificial Neural Networks can be trained based on existing data and used to predict a desired 

output variable. ANNs are helpful when there are several input variables; they can produce 

regression data much more quickly than through numerical analysis. Various parameters can be 

adjusted when creating ANNs. Hidden layers, neurons, training sets, and activation functions can 

be used to create and train an ANN. 

Climate and rutting data were collected from the Federal Highway Administration’s Long Term 

Pavement Performance (LTPP) database. LTPP includes records of pavement designs, traffic 

counts, climate, and performance over time. This data is collected for specific pavement sections 

designated by road signs and codes; a sample sign is located in Figure 1 below. For this paper, 

existing climate and rutting data from fifteen sections in the Midwestern United States will be 

used to train an ANN to predict pavement rutting. 

 

Figure 1. LTPP Designated Pavement Section 
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MODEL TESTING 

To create the model, pavement sections from the Midwest were selected so that all data used 

came from a similar climate zone. The sections selected from the LTPP database all had asphalt 

surface courses; these sections also contained several years of rutting data. Rutting 

measurements were compiled into an output spreadsheet in order for the ANN to have a model 

for output prediction. The following variable data was compiled into a separate spreadsheet and 

used as the ANN inputs: Annual Average Precipitation, Annual Average Temperature, Annual 

Average Freeze Index, Annual Average Humidity, AADTT, 18-Kip ESAL, and Time. These 

inputs were used to train an ANN to match the measured rutting output data. 

The inputs pass through a set of neurons within hidden layers to collect the predicted rutting 

output data. The neurons process the input data by calculating its weighted averages using an 

activation function. There are three activation functions MATLAB uses: tansig, logsig, and 

purelin. The algorithms of each activation function are as follows: 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑥)  =  
2

1 + 𝑒−2𝑥
− 1 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑥)  =  
1

1 + 𝑒−𝑥
 

𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥 

A training ratio of 70% Training Data, 15% Test Set, and 15% Validation Set was used to create 

the model. For all models, 20 iterations were conducted to train the network. To find the 

optimum number of neurons, models were tested using different activation functions with the 

number of neurons in one hidden layer ranging from 2-10. The tansig and logsig activation 

functions were used for testing in one hidden layer, since the purelin activation function would 

return negative predicted rutting values. Root Mean Square Error (RMSE) and Mean Absolute 
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Percentage Error (MAPE) were calculated based on the predicted output to validate the models' 

accuracy. To calculate the RMSE and MAPE, the model was used to compare predicted and 

actual rutting on all the selected LTPP pavement data. A model with a MAPE of less than 10% is 

considered ideal; the results of the models are displayed in Table 1 below. 

Table 1. One-Layer Model Testing 

 

# Neurons 
Tansig Logsig 

RMSE MAPE RMSE MAPE 

2 1.2736 13.5558 0.8660 10.2541 

3 0.6721 10.9080 0.9013 10.0982 

4 0.4761 8.8244 3.0750 8.8974 

5 0.5919 4.1720 0.7380 6.0550 

6 0.3875 5.5907 0.5920 9.7622 

7 0.4498 4.5445 0.4003 9.9364 

8 0.3607 9.1473 0.5313 8.3269 

9 0.3861 4.0959 0.4188 8.8081 

10 0.3646 8.5192 0.4213 10.6675 

 

It can be determined from this data that a 9-neuron model using the tansig activation function 

provides the greatest level of accuracy. This model results in the smallest MAPE, with a 

calculated value of approximately 4.1%. Further modeling can be done with more hidden layers 

and a combination of activation functions; 9 neurons were used in each layer for both 2 hidden 

layer and 3 hidden layer models. Table 2 displays the results of 2 hidden layer models with 9 

neurons in each layer. 
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Table 2. Two-Layer, 9-Neuron Model Testing 

Function Combination RMSE MAPE 

Tansig-Logsig 0.4105 4.0774 

Tansig-Tansig 0.3758 8.7079 

Tansig-Purelin 0.3881 8.0212 

Logsig-Logsig 0.4298 8.9044 

Logsig-Tansig 0.4104 9.1728 

Logsig-Purelin 0.4930 6.9111 

Purelin-Logsig 0.3857 7.1775 

Purelin-Tansig 0.3986 11.2639 

 

From this data, the tansig-logsig function combination provides the smallest MAPE, 

approximately 4.08%. This MAPE is lower than the one-layer, 9-neuron tansig model result. One 

more set of trials was run using three hidden layers with 9 neurons in each layer. Table 3 

contains the results of the three-layer tests. 

Table 3. Three-Layer, 9-Neuron Model Testing 

 

Function Combination RMSE MAPE 

Tansig-Logsig-Logsig 0.3842 9.3802 

Tansig-Tansig-Tansig 0.3199 9.1397 

Tansig-Purelin-Purelin 0.4549 6.7588 

Logsig-Logsig-Logsig 0.4095 9.2333 

Logsig-Tansig-Tansig 0.4049 8.3873 

Logsig-Purelin-Purelin 0.3883 11.1597 

Purelin-Logsig-Logsig 0.4449 7.2254 

Purelin-Tansig-Tansig 0.3471 6.9468 

 

  



8 
 

The three-layer function combined with the smallest MAPE is the tansig-purelin-purelin model, 

which is approximately 6.8%. This indicates that out of all the models tested, the two-layer, 9 

neurons, tansig-logsig model results in the highest accuracy for predicting pavement rutting. The 

MATLAB code for the ANN model is located in the Appendix section; a graphical 

representation of the 7-9-9-1 model is depicted in Figure 2 below. 

 

Figure 2. Diagram of 7-9-9-1 Model 

Predicted rutting values from the 7-9-9-1 model are displayed in Figure 3 below. The predicted 

rutting is compared against the actual rutting from the Evansville, IN, pavement section. From 

the figure, the linear trend line of the predicted values contains similar results to the actual 

rutting values. Figure 4 displays the predicted rutting values of all the input data used to create 
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the model. Ideally, the predicted and actual values should align to form a linear trend line. There 

is some deviation with the model, but the R-squared value of 0.9516 indicates that this model 

should produce accurately predicted rutting values for pavement sections in the Midwestern 

United States. 

 

Figure 3. Comparison of Rutting on I-64 Section in Evansville, IN 

 

Figure 4. Comparison of Measured Rutting to Predicted Rutting 
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CONCLUSION 

Predicting rutting accurately can aid state Departments of Transportation forecast when to repair 

rutting in pavement sections. The 7-9-9-1 ANN model used to predict rutting produces favorable 

results. This model is best used to predict rutting in pavement sections in the Midwestern United 

States. Modeling can also be done in pavement sections across various regions of the world. 

Further modeling could be performed on specific types of roads, such as arterials, local roads, 

and freeways. 
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APPENDIX 

 

%% Data Input and Preparation 
clc; clear; close all; 
in=xlsread('_MasterData_Input_Days.xlsx');  % Input File 
out=xlsread('_MasterData_Output.xlsx');    % Output File 
data = [in out]; 
input=[1 2 3 4 5 6 7]; % Input Layers 
p=data(:,input); 
output=[8]; % Output Layer 
t=data(:,output);  
p=p'; t=t'; 
 
% Transposing Matrices 
t = log(t+1); 
 
% Defining Validation Dataset 
trainRatio1=0.7;  
valRatio1=0.15;  
testRatio1=0.15; 
 
% Network Definition 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
nnn1=1;  % First Number of Neurons in the Hidden Layer 
nnnj=1;  % Jump in Number of Neurons in the Hidden Layer 
nnnf=9; % Last Number of Neurons in the Hidden Layer  
net1.trainparam.lr=0.1;  
net1.trainParam.epochs=500; 
 
% Training Network Iterations 
it = 20; 
 
% Max Number of Iteration  
ii = 0; 
netopt{:}=1:nnnf; 
for nnn=nnn1:nnnj:nnnf   
    ii=ii+1; nnn;  
    net1=newff(p,t,[nnn nnn]); % No. Hidden Layers 
    evalopt(ii)=100;  
    for i=1:it 
        [net1,tr,y,et]=train(net1,p,t); 
        net1.layers{1}.transferFcn = 'tansig'; % First Activation Function 
        net1.layers{2}.transferFcn = 'logsig'; % Second Activation Function 
        net1.divideParam.trainRatio=trainRatio1; 
        net1.divideParam.valRatio=valRatio1; 
        net1.divideParam.testRatio=testRatio1; 
        estval=sim(net1,p(:,tr.valInd)); 
        eval=mse(estval-t(:,tr.valInd)); 
        if eval<evalopt(ii)              
           netopt{(ii)}=net1; 
           tropt(ii)=tr; evalopt(ii)=eval; 
        end 
    end 
end 
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%% Error Plot 
plot(nnn1:nnnj:nnnf,evalopt) 
 
%% Output  
nn = 1; 
ptrain=p(:,tropt(nn).trainInd);      
ttrain=t(:,tropt(nn).trainInd);      
esttrain=sim(netopt{nn},ptrain);  
ptest=p(:,tropt(nn).testInd);        
ttest=t(:,tropt(nn).testInd);       
esttest=sim(netopt{nn},ptest);  
pval=p(:,tropt(nn).valInd);          
tval=t(:,tropt(nn).valInd);          
estval=sim(netopt{nn},pval);  
estwhole=sim(netopt{nn},p); 
 
% Calculation of RMSE  
e = t-y; 
pre_MAPE = abs((y-t)./t); 
MAPE = mean(pre_MAPE(isfinite(pre_MAPE)))*100 
RMSE = (mse(net1,t,y,'regularization',0.1))^(1/2) 
 
% Transpose for Excel 
t=t'; 
y=y'; 
 
%% Visuals 
view(net1) 
%figure; plot(ttrain,esttrain,'.b'); 
%figure; plot(tval,estval,'.g'); 
%figure; plot(ttest,esttest,'.r'); 
%figure; plot(t,estwhole,'.k') 
figure; 
plotregression(ttrain,esttrain,'Train',tval,estval,'Validation',ttest,esttest,'Test',
t,estwhole,'Whole Data'); 

 


